Conjugacy subgroups in nilpotent groups
Algebra i logika, Tome 6 (1967) no. 2, pp. 61-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the present note is following Theorem 2.I . Let $G$ be a finitely-generated nilpotent group and let $A$, $B$ be subgroups of $G$ which are not conjugate in $G$. Then there is an epimorphism $\varphi$ of $G$ onto a finite group $H$ such that $A\varphi$ and $B\varphi$ are not conjugate in $H$.
@article{AL_1967_6_2_a5,
     author = {V. N. Remeslennikov},
     title = {Conjugacy subgroups in nilpotent groups},
     journal = {Algebra i logika},
     pages = {61--76},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_1967_6_2_a5/}
}
TY  - JOUR
AU  - V. N. Remeslennikov
TI  - Conjugacy subgroups in nilpotent groups
JO  - Algebra i logika
PY  - 1967
SP  - 61
EP  - 76
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_1967_6_2_a5/
LA  - ru
ID  - AL_1967_6_2_a5
ER  - 
%0 Journal Article
%A V. N. Remeslennikov
%T Conjugacy subgroups in nilpotent groups
%J Algebra i logika
%D 1967
%P 61-76
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_1967_6_2_a5/
%G ru
%F AL_1967_6_2_a5
V. N. Remeslennikov. Conjugacy subgroups in nilpotent groups. Algebra i logika, Tome 6 (1967) no. 2, pp. 61-76. http://geodesic.mathdoc.fr/item/AL_1967_6_2_a5/