Conjugacy subgroups in nilpotent groups
Algebra i logika, Tome 6 (1967) no. 2, pp. 61-76
Cet article a éte moissonné depuis la source Math-Net.Ru
The main result of the present note is following Theorem 2.I . Let $G$ be a finitely-generated nilpotent group and let $A$, $B$ be subgroups of $G$ which are not conjugate in $G$. Then there is an epimorphism $\varphi$ of $G$ onto a finite group $H$ such that $A\varphi$ and $B\varphi$ are not conjugate in $H$.
@article{AL_1967_6_2_a5,
author = {V. N. Remeslennikov},
title = {Conjugacy subgroups in nilpotent groups},
journal = {Algebra i logika},
pages = {61--76},
year = {1967},
volume = {6},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_1967_6_2_a5/}
}
V. N. Remeslennikov. Conjugacy subgroups in nilpotent groups. Algebra i logika, Tome 6 (1967) no. 2, pp. 61-76. http://geodesic.mathdoc.fr/item/AL_1967_6_2_a5/