Algebraic linear groups as whole groups of automorphisms and the closeness of their verbal subgroups
Algebra i logika, Tome 6 (1967) no. 1, pp. 83-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Every algebraic linear group over a field $K$ of the characteristic $0$ is rationally isomorphic to a group of all automorphisms of some universal algebra $\mathrm{V}^\phi$ which arises from a finite-dimensional vector space $\mathrm{V}$ over $K$ by adding to it some finite collection $\Phi$ of polylinear operations on $\mathrm{V}$ (see [3], pp. 305–306). For an arbitrary word $V$ the verbal subgroup $V(G)$ of any algebraic linear group $G$ over the universal domain is closed and has a finite width.
@article{AL_1967_6_1_a8,
     author = {Ju. I. Merzljakov},
     title = {Algebraic linear groups as whole groups of automorphisms and the closeness of their verbal subgroups},
     journal = {Algebra i logika},
     pages = {83--94},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_1967_6_1_a8/}
}
TY  - JOUR
AU  - Ju. I. Merzljakov
TI  - Algebraic linear groups as whole groups of automorphisms and the closeness of their verbal subgroups
JO  - Algebra i logika
PY  - 1967
SP  - 83
EP  - 94
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_1967_6_1_a8/
LA  - ru
ID  - AL_1967_6_1_a8
ER  - 
%0 Journal Article
%A Ju. I. Merzljakov
%T Algebraic linear groups as whole groups of automorphisms and the closeness of their verbal subgroups
%J Algebra i logika
%D 1967
%P 83-94
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_1967_6_1_a8/
%G ru
%F AL_1967_6_1_a8
Ju. I. Merzljakov. Algebraic linear groups as whole groups of automorphisms and the closeness of their verbal subgroups. Algebra i logika, Tome 6 (1967) no. 1, pp. 83-94. http://geodesic.mathdoc.fr/item/AL_1967_6_1_a8/