The residual finiteness concerning conjugacy of supersoluble groups
Algebra i logika, Tome 6 (1967) no. 1, pp. 63-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

Every supersoluble group $G$ is residually finite concerning conjugacy, i.e. each two its elements are conjugate in $G$ if and only if its images are conjugate in every finite homomorphic image of $G$.
@article{AL_1967_6_1_a6,
     author = {M. I. Kargapolov},
     title = {The residual finiteness concerning conjugacy of supersoluble groups},
     journal = {Algebra i logika},
     pages = {63--68},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_1967_6_1_a6/}
}
TY  - JOUR
AU  - M. I. Kargapolov
TI  - The residual finiteness concerning conjugacy of supersoluble groups
JO  - Algebra i logika
PY  - 1967
SP  - 63
EP  - 68
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_1967_6_1_a6/
LA  - ru
ID  - AL_1967_6_1_a6
ER  - 
%0 Journal Article
%A M. I. Kargapolov
%T The residual finiteness concerning conjugacy of supersoluble groups
%J Algebra i logika
%D 1967
%P 63-68
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_1967_6_1_a6/
%G ru
%F AL_1967_6_1_a6
M. I. Kargapolov. The residual finiteness concerning conjugacy of supersoluble groups. Algebra i logika, Tome 6 (1967) no. 1, pp. 63-68. http://geodesic.mathdoc.fr/item/AL_1967_6_1_a6/