The residual finiteness concerning conjugacy of supersoluble groups
Algebra i logika, Tome 6 (1967) no. 1, pp. 63-68
Voir la notice de l'article provenant de la source Math-Net.Ru
Every supersoluble group $G$ is residually finite concerning conjugacy, i.e. each two its elements are conjugate in $G$ if and only if its images are conjugate in every finite homomorphic image of $G$.
@article{AL_1967_6_1_a6,
author = {M. I. Kargapolov},
title = {The residual finiteness concerning conjugacy of supersoluble groups},
journal = {Algebra i logika},
pages = {63--68},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {1967},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_1967_6_1_a6/}
}
M. I. Kargapolov. The residual finiteness concerning conjugacy of supersoluble groups. Algebra i logika, Tome 6 (1967) no. 1, pp. 63-68. http://geodesic.mathdoc.fr/item/AL_1967_6_1_a6/