The hereditarily undecidability of one class of lattice-ordered Abelian groups
Algebra i logika, Tome 6 (1967) no. 1, pp. 45-62
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be an Abelian $\ell$-group. We denote through $G$ the lattice of all $\hat g$ with $g\in G$ (see [2]). Let $L$ be the class of all such Abelian $\ell$-group $G$ so that $G$ is divisible and Archimedean and $\hat G$ is atomic Boolean algebra. \underline{THEOREM 1.} (Elementary) theory of $L$ is hereditarily undecidable.
@article{AL_1967_6_1_a5,
author = {Yu. \v{S}. Gurevich},
title = {The hereditarily undecidability of one class of lattice-ordered {Abelian} groups},
journal = {Algebra i logika},
pages = {45--62},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {1967},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_1967_6_1_a5/}
}
Yu. Š. Gurevich. The hereditarily undecidability of one class of lattice-ordered Abelian groups. Algebra i logika, Tome 6 (1967) no. 1, pp. 45-62. http://geodesic.mathdoc.fr/item/AL_1967_6_1_a5/