On the groups whose lattice of subgroups is relatively complemented
Algebra i logika, Tome 6 (1967) no. 1, pp. 5-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

A locally finite group $G$ has the relatively complemented lattice of the subgroups if and only if (1) $G_1 \vartriangleleft G_2\vartriangleleft G_3\Rightarrow G_1\vartriangleleft G_3$ each subgroups $G_i$ in $G$ and (2) every Sylow subgroup of $G$ is elementary abelian and belongs to some complete Sylow base of $G$.
@article{AL_1967_6_1_a0,
     author = {I. N. Abramovskii},
     title = {On the groups whose lattice of subgroups is relatively complemented},
     journal = {Algebra i logika},
     pages = {5--8},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_1967_6_1_a0/}
}
TY  - JOUR
AU  - I. N. Abramovskii
TI  - On the groups whose lattice of subgroups is relatively complemented
JO  - Algebra i logika
PY  - 1967
SP  - 5
EP  - 8
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_1967_6_1_a0/
LA  - ru
ID  - AL_1967_6_1_a0
ER  - 
%0 Journal Article
%A I. N. Abramovskii
%T On the groups whose lattice of subgroups is relatively complemented
%J Algebra i logika
%D 1967
%P 5-8
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_1967_6_1_a0/
%G ru
%F AL_1967_6_1_a0
I. N. Abramovskii. On the groups whose lattice of subgroups is relatively complemented. Algebra i logika, Tome 6 (1967) no. 1, pp. 5-8. http://geodesic.mathdoc.fr/item/AL_1967_6_1_a0/