Voir la notice de l'article provenant de la source Numdam
@article{AIHPC_2002__19_1_113_0, author = {Bochi, Jairo and Viana, Marcelo}, title = {Uniform (projective) hyperbolicity or no hyperbolicity : a dichotomy for generic conservative maps}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {113--123}, publisher = {Elsevier}, volume = {19}, number = {1}, year = {2002}, mrnumber = {1902547}, zbl = {01785834}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AIHPC_2002__19_1_113_0/} }
TY - JOUR AU - Bochi, Jairo AU - Viana, Marcelo TI - Uniform (projective) hyperbolicity or no hyperbolicity : a dichotomy for generic conservative maps JO - Annales de l'I.H.P. Analyse non linéaire PY - 2002 SP - 113 EP - 123 VL - 19 IS - 1 PB - Elsevier UR - http://geodesic.mathdoc.fr/item/AIHPC_2002__19_1_113_0/ LA - en ID - AIHPC_2002__19_1_113_0 ER -
%0 Journal Article %A Bochi, Jairo %A Viana, Marcelo %T Uniform (projective) hyperbolicity or no hyperbolicity : a dichotomy for generic conservative maps %J Annales de l'I.H.P. Analyse non linéaire %D 2002 %P 113-123 %V 19 %N 1 %I Elsevier %U http://geodesic.mathdoc.fr/item/AIHPC_2002__19_1_113_0/ %G en %F AIHPC_2002__19_1_113_0
Bochi, Jairo; Viana, Marcelo. Uniform (projective) hyperbolicity or no hyperbolicity : a dichotomy for generic conservative maps. Annales de l'I.H.P. Analyse non linéaire, Tome 19 (2002) no. 1, pp. 113-123. http://geodesic.mathdoc.fr/item/AIHPC_2002__19_1_113_0/