Uniform (projective) hyperbolicity or no hyperbolicity : a dichotomy for generic conservative maps
Annales de l'I.H.P. Analyse non linéaire, Tome 19 (2002) no. 1, pp. 113-123
Cet article a éte moissonné depuis la source Numdam
@article{AIHPC_2002__19_1_113_0,
author = {Bochi, Jairo and Viana, Marcelo},
title = {Uniform (projective) hyperbolicity or no hyperbolicity : a dichotomy for generic conservative maps},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {113--123},
year = {2002},
publisher = {Elsevier},
volume = {19},
number = {1},
mrnumber = {1902547},
zbl = {01785834},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AIHPC_2002__19_1_113_0/}
}
TY - JOUR AU - Bochi, Jairo AU - Viana, Marcelo TI - Uniform (projective) hyperbolicity or no hyperbolicity : a dichotomy for generic conservative maps JO - Annales de l'I.H.P. Analyse non linéaire PY - 2002 SP - 113 EP - 123 VL - 19 IS - 1 PB - Elsevier UR - http://geodesic.mathdoc.fr/item/AIHPC_2002__19_1_113_0/ LA - en ID - AIHPC_2002__19_1_113_0 ER -
%0 Journal Article %A Bochi, Jairo %A Viana, Marcelo %T Uniform (projective) hyperbolicity or no hyperbolicity : a dichotomy for generic conservative maps %J Annales de l'I.H.P. Analyse non linéaire %D 2002 %P 113-123 %V 19 %N 1 %I Elsevier %U http://geodesic.mathdoc.fr/item/AIHPC_2002__19_1_113_0/ %G en %F AIHPC_2002__19_1_113_0
Bochi, Jairo; Viana, Marcelo. Uniform (projective) hyperbolicity or no hyperbolicity : a dichotomy for generic conservative maps. Annales de l'I.H.P. Analyse non linéaire, Tome 19 (2002) no. 1, pp. 113-123. http://geodesic.mathdoc.fr/item/AIHPC_2002__19_1_113_0/
