Uniform (projective) hyperbolicity or no hyperbolicity : a dichotomy for generic conservative maps
Annales de l'I.H.P. Analyse non linéaire, Tome 19 (2002) no. 1, pp. 113-123

Voir la notice de l'article provenant de la source Numdam

@article{AIHPC_2002__19_1_113_0,
     author = {Bochi, Jairo and Viana, Marcelo},
     title = {Uniform (projective) hyperbolicity or no hyperbolicity : a dichotomy for generic conservative maps},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {113--123},
     publisher = {Elsevier},
     volume = {19},
     number = {1},
     year = {2002},
     mrnumber = {1902547},
     zbl = {01785834},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AIHPC_2002__19_1_113_0/}
}
TY  - JOUR
AU  - Bochi, Jairo
AU  - Viana, Marcelo
TI  - Uniform (projective) hyperbolicity or no hyperbolicity : a dichotomy for generic conservative maps
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2002
SP  - 113
EP  - 123
VL  - 19
IS  - 1
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/item/AIHPC_2002__19_1_113_0/
LA  - en
ID  - AIHPC_2002__19_1_113_0
ER  - 
%0 Journal Article
%A Bochi, Jairo
%A Viana, Marcelo
%T Uniform (projective) hyperbolicity or no hyperbolicity : a dichotomy for generic conservative maps
%J Annales de l'I.H.P. Analyse non linéaire
%D 2002
%P 113-123
%V 19
%N 1
%I Elsevier
%U http://geodesic.mathdoc.fr/item/AIHPC_2002__19_1_113_0/
%G en
%F AIHPC_2002__19_1_113_0
Bochi, Jairo; Viana, Marcelo. Uniform (projective) hyperbolicity or no hyperbolicity : a dichotomy for generic conservative maps. Annales de l'I.H.P. Analyse non linéaire, Tome 19 (2002) no. 1, pp. 113-123. http://geodesic.mathdoc.fr/item/AIHPC_2002__19_1_113_0/