Voir la notice de l'article provenant de la source Numdam
@article{AIHPC_1996__13_3_319_0, author = {Planchon, F.}, title = {Global strong solutions in {Sobolev} or {Lebesgue} spaces to the incompressible {Navier-Stokes} equations in $\mathbb {R}^3$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {319--336}, publisher = {Gauthier-Villars}, volume = {13}, number = {3}, year = {1996}, mrnumber = {1395675}, zbl = {0865.35101}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AIHPC_1996__13_3_319_0/} }
TY - JOUR AU - Planchon, F. TI - Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in $\mathbb {R}^3$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 1996 SP - 319 EP - 336 VL - 13 IS - 3 PB - Gauthier-Villars UR - http://geodesic.mathdoc.fr/item/AIHPC_1996__13_3_319_0/ LA - en ID - AIHPC_1996__13_3_319_0 ER -
%0 Journal Article %A Planchon, F. %T Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in $\mathbb {R}^3$ %J Annales de l'I.H.P. Analyse non linéaire %D 1996 %P 319-336 %V 13 %N 3 %I Gauthier-Villars %U http://geodesic.mathdoc.fr/item/AIHPC_1996__13_3_319_0/ %G en %F AIHPC_1996__13_3_319_0
Planchon, F. Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in $\mathbb {R}^3$. Annales de l'I.H.P. Analyse non linéaire, Tome 13 (1996) no. 3, pp. 319-336. http://geodesic.mathdoc.fr/item/AIHPC_1996__13_3_319_0/