Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in 3
Annales de l'I.H.P. Analyse non linéaire, Tome 13 (1996) no. 3, pp. 319-336

Voir la notice de l'article provenant de la source Numdam

@article{AIHPC_1996__13_3_319_0,
     author = {Planchon, F.},
     title = {Global strong solutions in {Sobolev} or {Lebesgue} spaces to the incompressible {Navier-Stokes} equations in $\mathbb {R}^3$},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {319--336},
     publisher = {Gauthier-Villars},
     volume = {13},
     number = {3},
     year = {1996},
     mrnumber = {1395675},
     zbl = {0865.35101},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AIHPC_1996__13_3_319_0/}
}
TY  - JOUR
AU  - Planchon, F.
TI  - Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in $\mathbb {R}^3$
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1996
SP  - 319
EP  - 336
VL  - 13
IS  - 3
PB  - Gauthier-Villars
UR  - http://geodesic.mathdoc.fr/item/AIHPC_1996__13_3_319_0/
LA  - en
ID  - AIHPC_1996__13_3_319_0
ER  - 
%0 Journal Article
%A Planchon, F.
%T Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in $\mathbb {R}^3$
%J Annales de l'I.H.P. Analyse non linéaire
%D 1996
%P 319-336
%V 13
%N 3
%I Gauthier-Villars
%U http://geodesic.mathdoc.fr/item/AIHPC_1996__13_3_319_0/
%G en
%F AIHPC_1996__13_3_319_0
Planchon, F. Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in $\mathbb {R}^3$. Annales de l'I.H.P. Analyse non linéaire, Tome 13 (1996) no. 3, pp. 319-336. http://geodesic.mathdoc.fr/item/AIHPC_1996__13_3_319_0/