A characterization of maps in H 1 (B 3 ,S 2 ) which can be approximated by smooth maps
Annales de l'I.H.P. Analyse non linéaire, Tome 7 (1990) no. 4, pp. 269-286

Voir la notice de l'article provenant de la source Numdam

@article{AIHPC_1990__7_4_269_0,
     author = {Bethuel, F.},
     title = {A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {269--286},
     publisher = {Gauthier-Villars},
     volume = {7},
     number = {4},
     year = {1990},
     mrnumber = {1067776},
     zbl = {0708.58004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AIHPC_1990__7_4_269_0/}
}
TY  - JOUR
AU  - Bethuel, F.
TI  - A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1990
SP  - 269
EP  - 286
VL  - 7
IS  - 4
PB  - Gauthier-Villars
UR  - http://geodesic.mathdoc.fr/item/AIHPC_1990__7_4_269_0/
LA  - en
ID  - AIHPC_1990__7_4_269_0
ER  - 
%0 Journal Article
%A Bethuel, F.
%T A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps
%J Annales de l'I.H.P. Analyse non linéaire
%D 1990
%P 269-286
%V 7
%N 4
%I Gauthier-Villars
%U http://geodesic.mathdoc.fr/item/AIHPC_1990__7_4_269_0/
%G en
%F AIHPC_1990__7_4_269_0
Bethuel, F. A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps. Annales de l'I.H.P. Analyse non linéaire, Tome 7 (1990) no. 4, pp. 269-286. http://geodesic.mathdoc.fr/item/AIHPC_1990__7_4_269_0/