Voir la notice de l'article provenant de la source Numdam
@article{AIHPC_1990__7_4_269_0, author = {Bethuel, F.}, title = {A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {269--286}, publisher = {Gauthier-Villars}, volume = {7}, number = {4}, year = {1990}, mrnumber = {1067776}, zbl = {0708.58004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AIHPC_1990__7_4_269_0/} }
TY - JOUR AU - Bethuel, F. TI - A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps JO - Annales de l'I.H.P. Analyse non linéaire PY - 1990 SP - 269 EP - 286 VL - 7 IS - 4 PB - Gauthier-Villars UR - http://geodesic.mathdoc.fr/item/AIHPC_1990__7_4_269_0/ LA - en ID - AIHPC_1990__7_4_269_0 ER -
%0 Journal Article %A Bethuel, F. %T A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps %J Annales de l'I.H.P. Analyse non linéaire %D 1990 %P 269-286 %V 7 %N 4 %I Gauthier-Villars %U http://geodesic.mathdoc.fr/item/AIHPC_1990__7_4_269_0/ %G en %F AIHPC_1990__7_4_269_0
Bethuel, F. A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps. Annales de l'I.H.P. Analyse non linéaire, Tome 7 (1990) no. 4, pp. 269-286. http://geodesic.mathdoc.fr/item/AIHPC_1990__7_4_269_0/