On the set-valued calculus in problems of viability and control for dynamic processes : the evolution equation
Annales de l'I.H.P. Analyse non linéaire, Tome S6 (1989), pp. 339-363.

Voir la notice de l'article provenant de la source Numdam

@article{AIHPC_1989__S6__339_0,
     author = {Kurzhanski, A. B. and Filippova, T. F.},
     title = {On the set-valued calculus in problems of viability and control for dynamic processes : the evolution equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {339--363},
     publisher = {Gauthier-Villars},
     volume = {S6},
     year = {1989},
     mrnumber = {1204022},
     zbl = {0693.49007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AIHPC_1989__S6__339_0/}
}
TY  - JOUR
AU  - Kurzhanski, A. B.
AU  - Filippova, T. F.
TI  - On the set-valued calculus in problems of viability and control for dynamic processes : the evolution equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1989
SP  - 339
EP  - 363
VL  - S6
PB  - Gauthier-Villars
UR  - http://geodesic.mathdoc.fr/item/AIHPC_1989__S6__339_0/
LA  - en
ID  - AIHPC_1989__S6__339_0
ER  - 
%0 Journal Article
%A Kurzhanski, A. B.
%A Filippova, T. F.
%T On the set-valued calculus in problems of viability and control for dynamic processes : the evolution equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 1989
%P 339-363
%V S6
%I Gauthier-Villars
%U http://geodesic.mathdoc.fr/item/AIHPC_1989__S6__339_0/
%G en
%F AIHPC_1989__S6__339_0
Kurzhanski, A. B.; Filippova, T. F. On the set-valued calculus in problems of viability and control for dynamic processes : the evolution equation. Annales de l'I.H.P. Analyse non linéaire, Tome S6 (1989), pp. 339-363. http://geodesic.mathdoc.fr/item/AIHPC_1989__S6__339_0/

1. Krasovski, N.N., The Control of a Dynamic System, Moscow, "Nauka", 1986 (in Russian). | MR

2. Kurzhanski, A.B., On the analytical description of the set of viable trajectories of a differential system, Dokl. Acad. Nauk SSSR, 1986, 287, 5, pp. 1047-1050 (in Russian). | Zbl | MR

3. Kurzhanski, A.B., Filippova, T.F. On the description of the set of viable trajectories of a differential inclusion, Dokl. Acad. Nauk SSSR, 1986, 289, 1, pp. 38-41 (in Russian). | Zbl | MR

4. Kurzhanski, A.B., Filippova, T.F. On the description of the set of viable trajectories of a control system, Different. Uravn., 1987, No. 8, pp. 1303-1315 (in Russian). | Zbl | MR

5. Aubin, J.-P., Cellina A., Differential inclusions, Heidelberg, Springer-Verlag, 1984. | Zbl | MR

6. Kurzhanski, A.B., Control and observation under uncertainty, Moscow, "Nauka", 1977 (in Russian).

7. Castaing, C., Valadier, M., Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580, Springer-Verlag, 1977. | Zbl | MR

8. Aubin, J.-P., Ekeland I., Applied nonlinear analysis, New York, Academic Press, 1984. | Zbl | MR

9. Panasyuk, A.I., Panasyuk V.I., Asymptotic magistral optimization of control systems, Minsk, "Nauka i Tekhika", 1986 (in Russian). | MR

10. Tolstonogov, A.A., Differential inclusions in Banach space, Novosibirsk, "Nauka", 1986 (in Russian). | Zbl

11. Blagodatskikh, V.I., Filippov A.F., Differential inclusions and optimal control, Trudy Matem. Inst. Akad. Nauk SSSR, 169, Moscow, "Nauka", 1985 (in Russian). | Zbl | MR

12. Demyanov, V.F., Lemaréchal C., Zowe J., Approximation to a set-valued mapping, I: a proposal, Appl. Math. Optim., 1986, 14, 3, p. 203-214. | Zbl | MR

13. Joffe, A.D., Tihomirov, V.M., The theory of extremal problems, Moscow, "Nauka", 1979. | Zbl

14. Kurzhanski, A.B. and Osipov, Yu.S. On optimal control under state constraints. Prikladnaia Matematika i Mehanika (Applied Mathematics and Mechanics) vol. 33, No. 4, 1969.

15. Rockafellar, R.T., State Constraints in Convex Problems of Bolza. SIAM J. Control. vol. 10, No. 4, 1972. | Zbl | MR

16. Demianov, V.F., Minimax: directional differentiation. Leningrad University Press, 1974. | MR