The class of Banach spaces, which do not have c0 as a spreading model, is not L2-hereditary
Annales de l'I.H.P. Probabilités et statistiques, Tome 19 (1983) no. 1, pp. 1-8
Voir la notice de l'article provenant de la source Numdam
@article{AIHPB_1983__19_1_1_0,
author = {Schachermayer, Walter},
title = {The class of {Banach} spaces, which do not have c0 as a spreading model, is not {L2-hereditary}},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {1--8},
publisher = {Gauthier-Villars},
volume = {19},
number = {1},
year = {1983},
zbl = {0518.46013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AIHPB_1983__19_1_1_0/}
}
TY - JOUR AU - Schachermayer, Walter TI - The class of Banach spaces, which do not have c0 as a spreading model, is not L2-hereditary JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1983 SP - 1 EP - 8 VL - 19 IS - 1 PB - Gauthier-Villars UR - http://geodesic.mathdoc.fr/item/AIHPB_1983__19_1_1_0/ LA - en ID - AIHPB_1983__19_1_1_0 ER -
%0 Journal Article %A Schachermayer, Walter %T The class of Banach spaces, which do not have c0 as a spreading model, is not L2-hereditary %J Annales de l'I.H.P. Probabilités et statistiques %D 1983 %P 1-8 %V 19 %N 1 %I Gauthier-Villars %U http://geodesic.mathdoc.fr/item/AIHPB_1983__19_1_1_0/ %G en %F AIHPB_1983__19_1_1_0
Schachermayer, Walter. The class of Banach spaces, which do not have c0 as a spreading model, is not L2-hereditary. Annales de l'I.H.P. Probabilités et statistiques, Tome 19 (1983) no. 1, pp. 1-8. http://geodesic.mathdoc.fr/item/AIHPB_1983__19_1_1_0/
