On the asymptotic behaviour of sequences of random variables and of their previsible compensators
Annales de l'I.H.P. Probabilités et statistiques, Tome 17 (1981) no. 1, pp. 63-73.

Voir la notice de l'article provenant de la source Numdam

@article{AIHPB_1981__17_1_63_0,
     author = {Tuy\^en, D\~ao Quang},
     title = {On the asymptotic behaviour of sequences of random variables and of their previsible compensators},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {63--73},
     publisher = {Gauthier-Villars},
     volume = {17},
     number = {1},
     year = {1981},
     mrnumber = {610499},
     zbl = {0453.60052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AIHPB_1981__17_1_63_0/}
}
TY  - JOUR
AU  - Tuyên, Dão Quang
TI  - On the asymptotic behaviour of sequences of random variables and of their previsible compensators
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 1981
SP  - 63
EP  - 73
VL  - 17
IS  - 1
PB  - Gauthier-Villars
UR  - http://geodesic.mathdoc.fr/item/AIHPB_1981__17_1_63_0/
LA  - en
ID  - AIHPB_1981__17_1_63_0
ER  - 
%0 Journal Article
%A Tuyên, Dão Quang
%T On the asymptotic behaviour of sequences of random variables and of their previsible compensators
%J Annales de l'I.H.P. Probabilités et statistiques
%D 1981
%P 63-73
%V 17
%N 1
%I Gauthier-Villars
%U http://geodesic.mathdoc.fr/item/AIHPB_1981__17_1_63_0/
%G en
%F AIHPB_1981__17_1_63_0
Tuyên, Dão Quang. On the asymptotic behaviour of sequences of random variables and of their previsible compensators. Annales de l'I.H.P. Probabilités et statistiques, Tome 17 (1981) no. 1, pp. 63-73. http://geodesic.mathdoc.fr/item/AIHPB_1981__17_1_63_0/

[1] D.G. Austin, G.A. Edgar, A. Ionescu Tulcea, Pointwise convergence in term of expectation. Z. Wahrscheinlichkeitstheorie verw. Gebiete, t. 30, 1974, p. 17-26. | Zbl | MR

[2] [a] A. Bellow, On vector valued asymptotic martingales. Proc. Nat. Acad. Sci. U. S. A., t. 73, n° 6, 1976, p. 1798-1799. | Zbl | MR

[b] A. Bellow, Several stability properties of the class of asymptotic martingales. Z. Wahrscheinlichkeitstheorie verw. Gebiete, t. 37, 1977, p. 275-290. | Zbl | MR

[3] A.N. Borodin, Quasi-martingales. Theory of Probability and Appl. 1978-3. | Zbl | MR

[4] Dan Anbav, An application of a theorem of Robbins and Siegmund. Annals of Statistics, t. 4, n° 5, 1976, p. 1018-1021 | Zbl | MR

[5] G.A. Edgar, L. Sucheston, Amarts, A class of asymptotic martingales (Discrete parameter), J. Multivariate Anal., t. 6, 1976, p. 193-221. | Zbl | MR

[6] J. Neveu, a) Mathematical foundations of the calculus of probability, Holden Day, San Fransisco, 1965 ; b) Martingales discrètes, Masson, 1972. | Zbl | MR

[7] M.M. Rao, Quasi-martingales. Math. Scand., t. 24, 1969, p. 79-92. | Zbl | MR

[8] H. Robbins, D. Siegmund, A convergence theorem for non negative almost supermartingales and some applications. Optimization methods in statistics, A. P. New-York, 1971, p. 233-257. | Zbl | MR

[9] R.J. Tomkins, A law of the Iterated Logarithm Logarithm for martingales. Z. Wahrscheinlickeitstheorie verw. Gebiete, t. 33, 1975, p. 55-59. | Zbl | MR