Voir la notice de l'article provenant de la source Numdam
@article{AIHPB_1980__16_1_29_0, author = {Weron, Aleksander}, title = {Second order stochastic processes and the dilation theory in {Banach} spaces}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {29--38}, publisher = {Gauthier-Villars}, volume = {16}, number = {1}, year = {1980}, mrnumber = {575174}, zbl = {0445.60010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AIHPB_1980__16_1_29_0/} }
TY - JOUR AU - Weron, Aleksander TI - Second order stochastic processes and the dilation theory in Banach spaces JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1980 SP - 29 EP - 38 VL - 16 IS - 1 PB - Gauthier-Villars UR - http://geodesic.mathdoc.fr/item/AIHPB_1980__16_1_29_0/ LA - en ID - AIHPB_1980__16_1_29_0 ER -
%0 Journal Article %A Weron, Aleksander %T Second order stochastic processes and the dilation theory in Banach spaces %J Annales de l'I.H.P. Probabilités et statistiques %D 1980 %P 29-38 %V 16 %N 1 %I Gauthier-Villars %U http://geodesic.mathdoc.fr/item/AIHPB_1980__16_1_29_0/ %G en %F AIHPB_1980__16_1_29_0
Weron, Aleksander. Second order stochastic processes and the dilation theory in Banach spaces. Annales de l'I.H.P. Probabilités et statistiques, Tome 16 (1980) no. 1, pp. 29-38. http://geodesic.mathdoc.fr/item/AIHPB_1980__16_1_29_0/
[1] Banach space valued stationary processes and their linear prediction, Dissertationes Math., t. 125, 1975, p. 1-45. | Zbl | MR
and ,[2] An analogue of Sz.-Nagy's dilation theorem, Bull. Acad. Polon. Sci., t. 24, 1976, p. 867-872. | Zbl | MR
and ,[3] Aronszajn-Kolmogorov type theorems for positive definite kernels in locally convex spaces, Studia Math., t. 69 (to appear). | Zbl | MR
and ,[4] An isomorphic theorem for Banach space valued stationary stochastic sequences, Bull. Acad. Polon. Sci., t. 26, 1978, p. 169-173. | Zbl | MR
,[5] A decomposition of the density of operator valued measure in Banach spaces, Bull. Acad. Polon. Sci. (to appear).
and ,[6] Subordination of infinite-dimensional stationary stochastic processes, Ann. Inst. Henri Poincaré, t. 6, 1970, p. 115-130. | Zbl | MR | mathdoc-id
and ,[7] Dilations as propagators of Hilbertian varieties, S. I. A. M. J. Anal., t. 9, 1978, p. 414-456. | Zbl | MR
,[8]Propagators and dilations, Lecture Notes in Math., p. 656, 1978, p. 95-117, Springer Verlag. | Zbl | MR
,[9]Integrations with respect to processes of linear functionals, Séminaire de Rennes, 1975.
,[10]Cylindrical stochastic integral, Séminaire de Rennes, 1976.
and ,[11] Dilations of Hilbert space operators (general theory), Dissertationes Math., t. 153, 1978, p. 1-61. | Zbl | MR
,[12]Dilations of Banach space operator valued functions, Ann. Polon. Math. (to appear). | Zbl | MR
and ,[13] Examples of non-stationary Banach space valued processes of second order, Lecture Notes in Math., t. 656, 1978, p. 171- 181, Springer Verlag. | Zbl
and ,[14] Functions aleatoires du second ordre a valeurs dans un espace de Hilbert, Ann. Inst. Henri Poincaré, t. 3, 1967, p. 323-396. | Zbl | MR | mathdoc-id
,[15] Mutual subordination of multivariate stationary processes over any locally compact Abelian group, Z. Wahrschernlichkeits theorie verw. Geb., t. 12, 1969, p. 333-343. | Zbl | MR
,[16] On the boundedness condition involved in dilation theory, Bull. Acad. Polon, t. 24, 1976, p. 877-881. | Zbl | MR
,[17]Dilations on involution semigroups, Proc. Amer. Math. Soc. | Zbl | MR
,[18] Apropos Professor Masani's talk, Lecture Notes in Math., t. 656, 1978, p. 245-249. | Zbl | MR
,[19] Prediction theory in Banach spaces, Lecture Notes in Math., t. 472, 1975, p. 207-228, Springer Verlag. | Zbl | MR
,[20] Remarks on positive-definite operator valued functions in Banach spaces, Bull. Acad. Polon. t. 24, 1976, p. 873-876. | Zbl | MR
,