Voir la notice de l'article provenant de la source Numdam
@article{AIHPB_1968__4_1_83_0, author = {Cohen, J. W.}, title = {Extreme value distribution for the {M/G/1} and the {G/M/1} queueing systems}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {83--98}, publisher = {Gauthier-Villars}, volume = {4}, number = {1}, year = {1968}, mrnumber = {232466}, zbl = {0162.49302}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AIHPB_1968__4_1_83_0/} }
TY - JOUR AU - Cohen, J. W. TI - Extreme value distribution for the M/G/1 and the G/M/1 queueing systems JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1968 SP - 83 EP - 98 VL - 4 IS - 1 PB - Gauthier-Villars UR - http://geodesic.mathdoc.fr/item/AIHPB_1968__4_1_83_0/ LA - en ID - AIHPB_1968__4_1_83_0 ER -
Cohen, J. W. Extreme value distribution for the M/G/1 and the G/M/1 queueing systems. Annales de l'I.H.P. Probabilités et statistiques, Tome 4 (1968) no. 1, pp. 83-98. http://geodesic.mathdoc.fr/item/AIHPB_1968__4_1_83_0/
[1] Introduction to the theory of queues. Oxford University Press, New York, 1962. | Zbl | MR
,[2] Application of Ballot theorems in the theory of queues. Proc. Symp. on Congestion Theory. The University of North Carolina Press, Chapel Hill, 1965. | Zbl | MR
,[3] The distribution of the maximum number of customers present simultaneously during a busy period for the system M/G/1 and for the system G/M/1. Journ. Appl. Prob., 4, 1967, p. 162-179. | Zbl | MR
,[4] The M/G/1 queueing system with finite waiting room. To be published.
,[5] Single server queue with uniformly bounded virtual waiting time. To be published. | Zbl | MR
,[6] Single server queue with uniformly bounded actual waiting time. To be published. | Zbl
,[7] An introduction to probability theory and its applications, vol. II, Wiley, New York, 1966. | Zbl | MR
,[8] Distribution of crossings of level K in a busy cycle of the M/G/1 queue. Ann. Inst. Henri Poincaré, B4, 1960, p. 75-81. | Zbl | MR | mathdoc-id
and ,[9] Return times for state K within a busy cycle for the M/G/1 queue. To be published.
,