Voir la notice de l'article provenant de la source Numdam
@article{AIHPA_1996__64_4_433_0, author = {Buchholz, Detlev}, title = {Phase space properties of local observables and structure of scaling limits}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {433--459}, publisher = {Gauthier-Villars}, volume = {64}, number = {4}, year = {1996}, mrnumber = {1407755}, zbl = {0857.46055}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AIHPA_1996__64_4_433_0/} }
TY - JOUR AU - Buchholz, Detlev TI - Phase space properties of local observables and structure of scaling limits JO - Annales de l'I.H.P. Physique théorique PY - 1996 SP - 433 EP - 459 VL - 64 IS - 4 PB - Gauthier-Villars UR - http://geodesic.mathdoc.fr/item/AIHPA_1996__64_4_433_0/ LA - en ID - AIHPA_1996__64_4_433_0 ER -
%0 Journal Article %A Buchholz, Detlev %T Phase space properties of local observables and structure of scaling limits %J Annales de l'I.H.P. Physique théorique %D 1996 %P 433-459 %V 64 %N 4 %I Gauthier-Villars %U http://geodesic.mathdoc.fr/item/AIHPA_1996__64_4_433_0/ %G en %F AIHPA_1996__64_4_433_0
Buchholz, Detlev. Phase space properties of local observables and structure of scaling limits. Annales de l'I.H.P. Physique théorique, Tome 64 (1996) no. 4, pp. 433-459. http://geodesic.mathdoc.fr/item/AIHPA_1996__64_4_433_0/
[1] Scaling algebras and renormalization group in algebraic quantum field theory, Rev. Math. Phys., Vol. 7, 1995, p. 1195. | Zbl | MR
and ,[2] Quantum field theory and critical phenomena, Oxford: Clarendon Press 1989. | MR
,[3] Local Quantum Physics, Berlin, Heidelberg, New York: Springer 1992. | Zbl | MR
,[4] When does a quantum field theory describe particles?, Commun. Math. Phys., Vol. 1, 1965, p. 308. | Zbl | MR
and ,[5] Causal independence and the energy-level density of states in quantum field theory, Commun. Math. Phys., Vol. 106, 1986, p. 321. | Zbl | MR
and ,[6] On the existence of equilibrium states in local quantum field theory, Commun. Math. Phys., Vol. 121, 1989, p. 255. | Zbl | MR
and ,[7] Standard and split inclusions of von Neumann algebras, Invent. Math., Vol. 75, 1984, p. 493. | Zbl | MR
and ,[8] Nuclear locally convex spaces, Berlin, Heidelberg, New York: Springer 1972. | Zbl | MR
,[9] On the nuclearity condition for massless fields, Lett. Math. Phys., Vol. 13, 1987, p. 313. | Zbl | MR
and ,[10] Nuclear maps and modular structures. II. Applications to quantum field theory, Commun. Math. Phys., Vol. 129, 1990, p. 115. | Zbl | MR
, and ,[11] How small is the phase space in quantum field theory?, Ann. Inst. H. Poincaré, Vol. 52, 1990, p. 237. | Zbl | MR | mathdoc-id
and ,[12] On the manifestation of particles, In: Mathematical physics towards the 21st century, Sen, R. N., Gersten, A., eds. Beer-Sheva: Ben Gurion University Press 1994.
,[13] Phase space properties of charged fields in theories of local observables, Rev. Math. Phys., Vol. 7, 1995, p. 527. | Zbl | MR
and ,[14] Theory of operator algebras. I., Berlin, Heidelberg, New York: Springer 1979. | Zbl | MR
,[15] C* algebras and W* algebras, Berlin, Heidelberg, New York: Springer 1971. | Zbl | MR
,[16] The universal structure of local algebras, Commun. Math. Phys., Vol. 111, 1987, p. 123. | Zbl | MR
, and ,[17] Generalized nuclearity conditions and the split property in quantum field theory, Lett. Math. Phys., Vol. 23, 1991, p. 159. | Zbl | MR
and ,