Voir la notice de l'article provenant de la source Numdam
@article{AIHPA_1972__17_4_295_0, author = {Gunson, J.}, title = {Physical states on quantum logics. {I}}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {295--311}, publisher = {Gauthier-Villars}, volume = {17}, number = {4}, year = {1972}, mrnumber = {336364}, zbl = {0252.46083}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AIHPA_1972__17_4_295_0/} }
Gunson, J. Physical states on quantum logics. I. Annales de l'I.H.P. Physique théorique, Tome 17 (1972) no. 4, pp. 295-311. http://geodesic.mathdoc.fr/item/AIHPA_1972__17_4_295_0/
[1] The logic of quantum mechanics (Ann. Math., t. 37, 1936, p. 823-843). | Zbl | MR | JFM
and ,[2] The mathematical foundations of quantum mechanics, Benjamin, New York, 1963. | Zbl
,[3] On the algebraic structure of quantum mechanics (Commun. Math. Phys., t. 6, 1967, p. 262-285). | Zbl | MR
,[4] Geometry of quantum theory, vol. I, Van Nostrand, Princeton, 1968. | Zbl | MR
,[5] Measures on the closed subspaces of a Hilbert space (J. Math. Mech., t. 6, 1957, p. 885-894). | Zbl | MR
,[6]
, private communication.[7] Quasi-states on C*-algebras (Trans. Amer. Math. Soc., t. 149, 1970, p. 601-625). | Zbl | MR
,[8] On rings of operators, II (Trans. Amer. Math. Soc., t. 41, 1937, p. 208-248). | Zbl | MR | JFM
and ,[9] Ph. D. Thesis, University of Birmingham, 1968.
,[10] Isoclinic n-planes in Euclidean 2n-space, Clifford parallels in elliptic (2n-1)-space and the Hurwitz matrix equations (Mem. Amer. Math. Soc., No. 41, 1961). | Zbl | MR
,[11] Les algèbres d'opérateurs dans l'espace hilbertien (algèbres de von Neumann), Gauthier-Villars, Paris, 1957, p. 229. | Zbl | MR
,[12] See ref. [11], p. 3.
[13] See ref. [11], p. 62.
[14] See ref. [11], p. 288.
[15] Functional analysis, Springer, Berlin, 1965, p. 69. | Zbl | MR
,[16] Perturbation theory for linear operators, Springer, Berlin, 1966, p. 432. | Zbl | MR
,[17] Introduction to the theory of integration, Academic Press, New York, 1963, ch. II, theorem 15.3. | Zbl | MR
,[18] On a certain class of operator algebras (Trans. Amer. Math. Soc., t. 95. 1960, p. 318-340). | Zbl | MR
,