Voir la notice de l'article provenant de la source Numdam
@article{AIHPA_1971__15_1_1_0, author = {Edwards, C. M.}, title = {Sets of simple observables in the operational approach to quantum theory}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {1--14}, publisher = {Gauthier-Villars}, volume = {15}, number = {1}, year = {1971}, mrnumber = {288555}, zbl = {0222.46043}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AIHPA_1971__15_1_1_0/} }
TY - JOUR AU - Edwards, C. M. TI - Sets of simple observables in the operational approach to quantum theory JO - Annales de l'I.H.P. Physique théorique PY - 1971 SP - 1 EP - 14 VL - 15 IS - 1 PB - Gauthier-Villars UR - http://geodesic.mathdoc.fr/item/AIHPA_1971__15_1_1_0/ LA - en ID - AIHPA_1971__15_1_1_0 ER -
Edwards, C. M. Sets of simple observables in the operational approach to quantum theory. Annales de l'I.H.P. Physique théorique, Tome 15 (1971) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/AIHPA_1971__15_1_1_0/
[1] On the Borel structure of C*-algebras. Commun. Math. Phys., t. 8, 1968, p. 147-164. | Zbl | MR
,[2] An operational approach to quantum probability. Commun. Math. Phys., t. 17, 1970, p. 239-260. | Zbl | MR
and ,[3] Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964. | Zbl | MR
,[4] Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1969. | Zbl
,[5] The operational approach to quantum probability, I. Commun. Math. Phys., t. 16, 1970, p. 207-230. | Zbl | MR
,[6] Classes of operations in quantum theory. Commun. Math. Phys., t. 20, 1971, p. 26-56. | Zbl | MR
,[7] Monotone convergence in partially ordered vector spaces. Ann. Inst. Henri Poincaré, t. 12 A, 1970, p. 323-328. | Zbl | MR | mathdoc-id
and ,[8] On the homeomorphic affine embedding of a locally compact cone into a Banach dual space endowed with the vague topology. Proc. London Math. Soc., t. 14, 1964, p. 399-414. | Zbl | MR
,[9] Order ideals in a C*-algebra and its dual. Duke Math. J., t. 30, 1963, p. 391-412. | Zbl | MR
,[10] On the monotone sequential closure of a C*-algebra. Math. Scand., t. 25, 1969, p. 59-70. | Zbl | MR
,[11] On the algebraic structure of quantum mechanics. Commun. Math. Phys., t. 6, 1967, p. 262-285. | Zbl | MR
,[12] An algebraic approach to quantum field theory. J. Math. Phys., t. 5, 1964, p. 846-861. | Zbl | MR
and ,[13] Convex sets in linear spaces. Duke Math. J., t. 18, 1951, p. 443-466. | Zbl | MR
,[14] Separation properties of convex cones. Proc. Am. Math., t. 6, 1955, p. 313- 318. | Zbl | MR
,[15] On the weak and monotone σ-closures of C*-algebras. Commun. Math. Phys., t. 11, 1969, p. 221-226. | Zbl | MR
,[16] On the ideal structure of operator algebras. Mém. Am. Math. Soc., t. 45, 1963. | Zbl | MR
,