Voir la notice de l'article provenant de la source Numdam
@article{AIHPA_1968__8_3_301_0, author = {Richard, J. L.}, title = {Possible derivation of some $SO(p, q)$ group representations by means of a canonical realization of the $SO(p, q)$ {Lie} algebra}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {301--309}, publisher = {Gauthier-Villars}, volume = {8}, number = {3}, year = {1968}, zbl = {0161.23705}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AIHPA_1968__8_3_301_0/} }
TY - JOUR AU - Richard, J. L. TI - Possible derivation of some $SO(p, q)$ group representations by means of a canonical realization of the $SO(p, q)$ Lie algebra JO - Annales de l'I.H.P. Physique théorique PY - 1968 SP - 301 EP - 309 VL - 8 IS - 3 PB - Gauthier-Villars UR - http://geodesic.mathdoc.fr/item/AIHPA_1968__8_3_301_0/ LA - en ID - AIHPA_1968__8_3_301_0 ER -
%0 Journal Article %A Richard, J. L. %T Possible derivation of some $SO(p, q)$ group representations by means of a canonical realization of the $SO(p, q)$ Lie algebra %J Annales de l'I.H.P. Physique théorique %D 1968 %P 301-309 %V 8 %N 3 %I Gauthier-Villars %U http://geodesic.mathdoc.fr/item/AIHPA_1968__8_3_301_0/ %G en %F AIHPA_1968__8_3_301_0
Richard, J. L. Possible derivation of some $SO(p, q)$ group representations by means of a canonical realization of the $SO(p, q)$ Lie algebra. Annales de l'I.H.P. Physique théorique, Tome 8 (1968) no. 3, pp. 301-309. http://geodesic.mathdoc.fr/item/AIHPA_1968__8_3_301_0/