Possible derivation of some SO(p,q) group representations by means of a canonical realization of the SO(p,q) Lie algebra
Annales de l'I.H.P. Physique théorique, Tome 8 (1968) no. 3, pp. 301-309

Voir la notice de l'article provenant de la source Numdam

@article{AIHPA_1968__8_3_301_0,
     author = {Richard, J. L.},
     title = {Possible derivation of some $SO(p, q)$ group representations by means of a canonical realization of the $SO(p, q)$ {Lie} algebra},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {301--309},
     publisher = {Gauthier-Villars},
     volume = {8},
     number = {3},
     year = {1968},
     zbl = {0161.23705},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AIHPA_1968__8_3_301_0/}
}
TY  - JOUR
AU  - Richard, J. L.
TI  - Possible derivation of some $SO(p, q)$ group representations by means of a canonical realization of the $SO(p, q)$ Lie algebra
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1968
SP  - 301
EP  - 309
VL  - 8
IS  - 3
PB  - Gauthier-Villars
UR  - http://geodesic.mathdoc.fr/item/AIHPA_1968__8_3_301_0/
LA  - en
ID  - AIHPA_1968__8_3_301_0
ER  - 
%0 Journal Article
%A Richard, J. L.
%T Possible derivation of some $SO(p, q)$ group representations by means of a canonical realization of the $SO(p, q)$ Lie algebra
%J Annales de l'I.H.P. Physique théorique
%D 1968
%P 301-309
%V 8
%N 3
%I Gauthier-Villars
%U http://geodesic.mathdoc.fr/item/AIHPA_1968__8_3_301_0/
%G en
%F AIHPA_1968__8_3_301_0
Richard, J. L. Possible derivation of some $SO(p, q)$ group representations by means of a canonical realization of the $SO(p, q)$ Lie algebra. Annales de l'I.H.P. Physique théorique, Tome 8 (1968) no. 3, pp. 301-309. http://geodesic.mathdoc.fr/item/AIHPA_1968__8_3_301_0/