A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries
Analysis and Geometry in Metric Spaces, Tome 5 (2017) no. 1, pp. 116-137
Cet article a éte moissonné depuis la source The Polish Digital Mathematics Library
Carnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with respect to the distance. We present the basic theory of Carnot groups together with several remarks.We consider them as special cases of graded groups and as homogeneous metric spaces.We discuss the regularity of isometries in the general case of Carnot-Carathéodory spaces and of nilpotent metric Lie groups.
Mots-clés :
Carnot groups, sub-Riemannian geometry, sub-Finsler geometry, homogeneous spaces, homogeneous groups, nilpotent groups, metric groups
@article{AGMS_2017_5_1_a6,
author = {Le Donne, Enrico},
title = {A {Primer} on {Carnot} {Groups:} {Homogenous} {Groups,} {Carnot-Carath\'eodory} {Spaces,} and {Regularity} of {Their} {Isometries}},
journal = {Analysis and Geometry in Metric Spaces},
pages = {116--137},
year = {2017},
volume = {5},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AGMS_2017_5_1_a6/}
}
TY - JOUR AU - Le Donne, Enrico TI - A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries JO - Analysis and Geometry in Metric Spaces PY - 2017 SP - 116 EP - 137 VL - 5 IS - 1 UR - http://geodesic.mathdoc.fr/item/AGMS_2017_5_1_a6/ LA - en ID - AGMS_2017_5_1_a6 ER -
%0 Journal Article %A Le Donne, Enrico %T A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries %J Analysis and Geometry in Metric Spaces %D 2017 %P 116-137 %V 5 %N 1 %U http://geodesic.mathdoc.fr/item/AGMS_2017_5_1_a6/ %G en %F AGMS_2017_5_1_a6
Le Donne, Enrico. A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries. Analysis and Geometry in Metric Spaces, Tome 5 (2017) no. 1, pp. 116-137. http://geodesic.mathdoc.fr/item/AGMS_2017_5_1_a6/