Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces
Analysis and Geometry in Metric Spaces, Tome 5 (2017) no. 1, pp. 98-115.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

We establish trace theorems for function spaces defined on general Ahlfors regular metric spaces Z. The results cover the Triebel-Lizorkin spaces and the Besov spaces for smoothness indices s 1, as well as the first order Hajłasz-Sobolev space M1,p(Z). They generalize the classical results from the Euclidean setting, since the traces of these function spaces onto any closed Ahlfors regular subset F ⊂ Z are Besov spaces defined intrinsically on F. Our method employs the definitions of the function spaces via hyperbolic fillings of the underlying metric space.
Mots-clés : Trace theorems, Sobolev spaces, Besov spaces, Triebel-Lizorkin spaces, hyperbolic filling
@article{AGMS_2017_5_1_a5,
     author = {Saksman, Eero and Soto, Tom\'as},
     title = {Traces of {Besov,} {Triebel-Lizorkin} and {Sobolev} {Spaces} on {Metric} {Spaces}},
     journal = {Analysis and Geometry in Metric Spaces},
     pages = {98--115},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2017_5_1_a5/}
}
TY  - JOUR
AU  - Saksman, Eero
AU  - Soto, Tomás
TI  - Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces
JO  - Analysis and Geometry in Metric Spaces
PY  - 2017
SP  - 98
EP  - 115
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2017_5_1_a5/
LA  - en
ID  - AGMS_2017_5_1_a5
ER  - 
%0 Journal Article
%A Saksman, Eero
%A Soto, Tomás
%T Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces
%J Analysis and Geometry in Metric Spaces
%D 2017
%P 98-115
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2017_5_1_a5/
%G en
%F AGMS_2017_5_1_a5
Saksman, Eero; Soto, Tomás. Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces. Analysis and Geometry in Metric Spaces, Tome 5 (2017) no. 1, pp. 98-115. http://geodesic.mathdoc.fr/item/AGMS_2017_5_1_a5/