Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down
Analysis and Geometry in Metric Spaces, Tome 5 (2017) no. 1, pp. 78-97.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

We show that products of snowflaked Euclidean lines are not minimal for looking down. This question was raised in Fractured fractals and broken dreams, Problem 11.17, by David and Semmes. The proof uses arguments developed by Le Donne, Li and Rajala to prove that the Heisenberg group is not minimal for looking down. By a method of shortcuts, we define a new distance d such that the product of snowflaked Euclidean lines looks down on (RN , d), but not vice versa.
Mots-clés : Ahlfors-regularity, biLipschitz pieces, BPI-spaces
@article{AGMS_2017_5_1_a4,
     author = {Joseph, Matthieu and Rajala, Tapio},
     title = {Products of {Snowflaked} {Euclidean} {Lines} {Are} {Not} {Minimal} for {Looking} {Down}},
     journal = {Analysis and Geometry in Metric Spaces},
     pages = {78--97},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2017_5_1_a4/}
}
TY  - JOUR
AU  - Joseph, Matthieu
AU  - Rajala, Tapio
TI  - Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down
JO  - Analysis and Geometry in Metric Spaces
PY  - 2017
SP  - 78
EP  - 97
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2017_5_1_a4/
LA  - en
ID  - AGMS_2017_5_1_a4
ER  - 
%0 Journal Article
%A Joseph, Matthieu
%A Rajala, Tapio
%T Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down
%J Analysis and Geometry in Metric Spaces
%D 2017
%P 78-97
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2017_5_1_a4/
%G en
%F AGMS_2017_5_1_a4
Joseph, Matthieu; Rajala, Tapio. Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down. Analysis and Geometry in Metric Spaces, Tome 5 (2017) no. 1, pp. 78-97. http://geodesic.mathdoc.fr/item/AGMS_2017_5_1_a4/