Some Invariant Properties of Quasi-Möbius Maps
Analysis and Geometry in Metric Spaces, Tome 5 (2017) no. 1, pp. 69-77
Cet article a éte moissonné depuis la source The Polish Digital Mathematics Library
We investigate properties which remain invariant under the action of quasi-Möbius maps of quasimetric spaces. A metric space is called doubling with constant D if every ball of finite radius can be covered by at most D balls of half the radius. It is shown that the doubling property is an invariant property for (quasi-)Möbius maps. Additionally it is shown that the property of uniform disconnectedness is an invariant for (quasi-)Möbius maps as well.
Mots-clés :
Möbius structures, doubling property, quasi-Möbius maps, uniform disconnectedness
@article{AGMS_2017_5_1_a3,
author = {Heer, Loreno},
title = {Some {Invariant} {Properties} of {Quasi-M\"obius} {Maps}},
journal = {Analysis and Geometry in Metric Spaces},
pages = {69--77},
year = {2017},
volume = {5},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AGMS_2017_5_1_a3/}
}
Heer, Loreno. Some Invariant Properties of Quasi-Möbius Maps. Analysis and Geometry in Metric Spaces, Tome 5 (2017) no. 1, pp. 69-77. http://geodesic.mathdoc.fr/item/AGMS_2017_5_1_a3/