Tangent Lines and Lipschitz Differentiability Spaces
Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces.We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz differentiability spaces.We show that any tangent space of a Lipschitz differentiability space contains at least n distinct tangent lines, obtained as the blow-up of n Lipschitz curves, where n is the dimension of the local measurable chart. Under additional assumptions on the space, such as curvature lower bounds, these n distinct tangent lines span an n-dimensional part of the tangent space.
Mots-clés : metric geometry, Lipschitz differentiability spaces, tangent of metric spaces, Ricci curvature
@article{AGMS_2016_4_1_a8,
     author = {Cavalletti, Fabio and Rajala, Tapio},
     title = {Tangent {Lines} and {Lipschitz} {Differentiability} {Spaces}},
     journal = {Analysis and Geometry in Metric Spaces},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2016},
     zbl = {1338.51014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a8/}
}
TY  - JOUR
AU  - Cavalletti, Fabio
AU  - Rajala, Tapio
TI  - Tangent Lines and Lipschitz Differentiability Spaces
JO  - Analysis and Geometry in Metric Spaces
PY  - 2016
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a8/
LA  - en
ID  - AGMS_2016_4_1_a8
ER  - 
%0 Journal Article
%A Cavalletti, Fabio
%A Rajala, Tapio
%T Tangent Lines and Lipschitz Differentiability Spaces
%J Analysis and Geometry in Metric Spaces
%D 2016
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a8/
%G en
%F AGMS_2016_4_1_a8
Cavalletti, Fabio; Rajala, Tapio. Tangent Lines and Lipschitz Differentiability Spaces. Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a8/