Weak Chord-Arc Curves and Double-Dome Quasisymmetric Spheres
Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

Let Ω be a planar Jordan domain and α > 0. We consider double-dome-like surfaces Σ(Ω, tα) over Ω where the height of the surface over any point x ∈ Ωequals dist(x, ∂Ω)α. We identify the necessary and sufficient conditions in terms of and α so that these surfaces are quasisymmetric to S2 and we show that Σ(Ω, tα) is quasisymmetric to the unit sphere S2 if and only if it is linearly locally connected and Ahlfors 2-regular.
Mots-clés : quasisymmetric spheres, double-dome-like surfaces, chord-arc property, Ahlfors 2-regularity
@article{AGMS_2016_4_1_a6,
     author = {Vellis, Vyron},
     title = {Weak {Chord-Arc} {Curves} and {Double-Dome} {Quasisymmetric} {Spheres}},
     journal = {Analysis and Geometry in Metric Spaces},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2016},
     zbl = {1336.30035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a6/}
}
TY  - JOUR
AU  - Vellis, Vyron
TI  - Weak Chord-Arc Curves and Double-Dome Quasisymmetric Spheres
JO  - Analysis and Geometry in Metric Spaces
PY  - 2016
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a6/
LA  - en
ID  - AGMS_2016_4_1_a6
ER  - 
%0 Journal Article
%A Vellis, Vyron
%T Weak Chord-Arc Curves and Double-Dome Quasisymmetric Spheres
%J Analysis and Geometry in Metric Spaces
%D 2016
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a6/
%G en
%F AGMS_2016_4_1_a6
Vellis, Vyron. Weak Chord-Arc Curves and Double-Dome Quasisymmetric Spheres. Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a6/