Weak Capacity and Modulus Comparability in Ahlfors Regular Metric Spaces
Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1
Cet article a éte moissonné depuis la source The Polish Digital Mathematics Library
Let (Z, d, μ) be a compact, connected, Ahlfors Q-regular metric space with Q > 1. Using a hyperbolic filling of Z,we define the notions of the p-capacity between certain subsets of Z and of theweak covering p-capacity of path families Γ in Z.We show comparability results and quasisymmetric invariance.As an application of our methodswe deduce a result due to Tyson on the geometric quasiconformality of quasisymmetric maps between compact, connected Ahlfors Q-regular metric spaces.
Mots-clés :
Weak capacity, weak covering capacity, modulus, quasisymmetry, quasi-isometry, Ahlfors regularmetric space, Gromov hyperbolic metric space, Ahlfors regular conformal dimension
@article{AGMS_2016_4_1_a4,
author = {Lindquist, Jeff},
title = {Weak {Capacity} and {Modulus} {Comparability} in {Ahlfors} {Regular} {Metric} {Spaces}},
journal = {Analysis and Geometry in Metric Spaces},
year = {2016},
volume = {4},
number = {1},
zbl = {06682298},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a4/}
}
Lindquist, Jeff. Weak Capacity and Modulus Comparability in Ahlfors Regular Metric Spaces. Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a4/