Isoperimetric Symmetry Breaking: a Counterexample to a Generalized Form of the Log-Convex Density Conjecture
Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1
Cet article a éte moissonné depuis la source The Polish Digital Mathematics Library
We give an example of a smooth surface of revolution for which all circles about the origin are strictly stable for fixed area but small isoperimetric regions are nearly round discs away from the origin.
@article{AGMS_2016_4_1_a3,
author = {Morgan, Frank},
title = {Isoperimetric {Symmetry} {Breaking:} a {Counterexample} to a {Generalized} {Form} of the {Log-Convex} {Density} {Conjecture}},
journal = {Analysis and Geometry in Metric Spaces},
year = {2016},
volume = {4},
number = {1},
zbl = {1355.53005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a3/}
}
TY - JOUR AU - Morgan, Frank TI - Isoperimetric Symmetry Breaking: a Counterexample to a Generalized Form of the Log-Convex Density Conjecture JO - Analysis and Geometry in Metric Spaces PY - 2016 VL - 4 IS - 1 UR - http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a3/ LA - en ID - AGMS_2016_4_1_a3 ER -
Morgan, Frank. Isoperimetric Symmetry Breaking: a Counterexample to a Generalized Form of the Log-Convex Density Conjecture. Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a3/