On the Hausdorff Dimension of CAT(κ) Surfaces
Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

We prove that a closed surface with a CAT(κ) metric has Hausdorff dimension = 2, and that there are uniform upper and lower bounds on the two-dimensional Hausdorff measure of small metric balls. We also discuss a connection between this uniformity condition and some results on the dynamics of the geodesic flow for such surfaces. Finally,we give a short proof of topological entropy rigidity for geodesic flow on certain CAT(−1) manifolds.
Mots-clés : metric geometry, Hausdorff dimension, CAT(k) surface, topological entropy
@article{AGMS_2016_4_1_a2,
     author = {Constantine, David and Lafont, Jean-Fran\c{c}ois},
     title = {On the {Hausdorff} {Dimension} of {CAT(\ensuremath{\kappa})} {Surfaces}},
     journal = {Analysis and Geometry in Metric Spaces},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a2/}
}
TY  - JOUR
AU  - Constantine, David
AU  - Lafont, Jean-François
TI  - On the Hausdorff Dimension of CAT(κ) Surfaces
JO  - Analysis and Geometry in Metric Spaces
PY  - 2016
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a2/
LA  - en
ID  - AGMS_2016_4_1_a2
ER  - 
%0 Journal Article
%A Constantine, David
%A Lafont, Jean-François
%T On the Hausdorff Dimension of CAT(κ) Surfaces
%J Analysis and Geometry in Metric Spaces
%D 2016
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a2/
%G en
%F AGMS_2016_4_1_a2
Constantine, David; Lafont, Jean-François. On the Hausdorff Dimension of CAT(κ) Surfaces. Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a2/