Applications of the ‘Ham Sandwich Theorem’ to Eigenvalues of the Laplacian
Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1
Cet article a éte moissonné depuis la source The Polish Digital Mathematics Library
We apply Gromov’s ham sandwich method to get: (1) domain monotonicity (up to a multiplicative constant factor); (2) reverse domain monotonicity (up to a multiplicative constant factor); and (3) universal inequalities for Neumann eigenvalues of the Laplacian on bounded convex domains in Euclidean space.
@article{AGMS_2016_4_1_a19,
author = {Funano, Kei},
title = {Applications of the {{\textquoteleft}Ham} {Sandwich} {Theorem{\textquoteright}} to {Eigenvalues} of the {Laplacian}},
journal = {Analysis and Geometry in Metric Spaces},
year = {2016},
volume = {4},
number = {1},
zbl = {1354.58024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a19/}
}
Funano, Kei. Applications of the ‘Ham Sandwich Theorem’ to Eigenvalues of the Laplacian. Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a19/