The Poincaré Inequality Does Not Improve with Blow-Up
Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

For each β > 1 we construct a family Fβ of metric measure spaces which is closed under the operation of taking weak-tangents (i.e. blow-ups), and such that each element of Fβ admits a (1, P)-Poincaré inequality if and only if P > β.
Mots-clés : Poincaré inequality, modulus
@article{AGMS_2016_4_1_a18,
     author = {Schioppa, Andrea},
     title = {The {Poincar\'e} {Inequality} {Does} {Not} {Improve} with {Blow-Up}},
     journal = {Analysis and Geometry in Metric Spaces},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2016},
     zbl = {06676755},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a18/}
}
TY  - JOUR
AU  - Schioppa, Andrea
TI  - The Poincaré Inequality Does Not Improve with Blow-Up
JO  - Analysis and Geometry in Metric Spaces
PY  - 2016
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a18/
LA  - en
ID  - AGMS_2016_4_1_a18
ER  - 
%0 Journal Article
%A Schioppa, Andrea
%T The Poincaré Inequality Does Not Improve with Blow-Up
%J Analysis and Geometry in Metric Spaces
%D 2016
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a18/
%G en
%F AGMS_2016_4_1_a18
Schioppa, Andrea. The Poincaré Inequality Does Not Improve with Blow-Up. Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a18/