On the Regularity of Alexandrov Surfaces with Curvature Bounded Below
Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

In this note, we prove that on a surface with Alexandrov’s curvature bounded below, the distance derives from a Riemannian metric whose components, for any p ∈ [1, 2), locally belong to W1,p out of a discrete singular set. This result is based on Reshetnyak’s work on the more general class of surfaces with bounded integral curvature.
Mots-clés : Alexandrov spaces, surfaces with bounded integral curvature, potential theory on surfaces
@article{AGMS_2016_4_1_a15,
     author = {Ambrosio, Luigi and Bertrand, J\'er\^ome},
     title = {On the {Regularity} of {Alexandrov} {Surfaces} with {Curvature} {Bounded} {Below}},
     journal = {Analysis and Geometry in Metric Spaces},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2016},
     zbl = {1353.53018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a15/}
}
TY  - JOUR
AU  - Ambrosio, Luigi
AU  - Bertrand, Jérôme
TI  - On the Regularity of Alexandrov Surfaces with Curvature Bounded Below
JO  - Analysis and Geometry in Metric Spaces
PY  - 2016
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a15/
LA  - en
ID  - AGMS_2016_4_1_a15
ER  - 
%0 Journal Article
%A Ambrosio, Luigi
%A Bertrand, Jérôme
%T On the Regularity of Alexandrov Surfaces with Curvature Bounded Below
%J Analysis and Geometry in Metric Spaces
%D 2016
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a15/
%G en
%F AGMS_2016_4_1_a15
Ambrosio, Luigi; Bertrand, Jérôme. On the Regularity of Alexandrov Surfaces with Curvature Bounded Below. Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a15/