Hardy and Hardy-Sobolev Spaces on Strongly Lipschitz Domains and Some Applications
Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

Let Ω ⊂ Rn be a strongly Lipschitz domain. In this article, the authors study Hardy spaces, Hpr (Ω)and Hpz (Ω), and Hardy-Sobolev spaces, H1,pr (Ω) and H1,pz,0 (Ω) on , for p ∈ ( n/n+1, 1]. The authors establish grand maximal function characterizations of these spaces. As applications, the authors obtain some div-curl lemmas in these settings and, when is a bounded Lipschitz domain, the authors prove that the divergence equation div u = f for f ∈ Hpz (Ω) is solvable in H1,pz,0 (Ω) with suitable regularity estimates.
Mots-clés : Hardy space, Hardy-Sobolev space, grand maximal function, div-curl formula, divergence equation
@article{AGMS_2016_4_1_a14,
     author = {Chen, Xiaming and Jiang, Renjin and Yang, Dachun},
     title = {Hardy and {Hardy-Sobolev} {Spaces} on {Strongly} {Lipschitz} {Domains} and {Some} {Applications}},
     journal = {Analysis and Geometry in Metric Spaces},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2016},
     zbl = {1354.42039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a14/}
}
TY  - JOUR
AU  - Chen, Xiaming
AU  - Jiang, Renjin
AU  - Yang, Dachun
TI  - Hardy and Hardy-Sobolev Spaces on Strongly Lipschitz Domains and Some Applications
JO  - Analysis and Geometry in Metric Spaces
PY  - 2016
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a14/
LA  - en
ID  - AGMS_2016_4_1_a14
ER  - 
%0 Journal Article
%A Chen, Xiaming
%A Jiang, Renjin
%A Yang, Dachun
%T Hardy and Hardy-Sobolev Spaces on Strongly Lipschitz Domains and Some Applications
%J Analysis and Geometry in Metric Spaces
%D 2016
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a14/
%G en
%F AGMS_2016_4_1_a14
Chen, Xiaming; Jiang, Renjin; Yang, Dachun. Hardy and Hardy-Sobolev Spaces on Strongly Lipschitz Domains and Some Applications. Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a14/