Relaxation and Integral Representation for Functionals of Linear Growth on Metric Measure spaces
Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1 Cet article a éte moissonné depuis la source The Polish Digital Mathematics Library

Voir la notice de l'article

This article studies an integral representation of functionals of linear growth on metric measure spaces with a doubling measure and a Poincaré inequality. Such a functional is defined via relaxation, and it defines a Radon measure on the space. For the singular part of the functional, we get the expected integral representation with respect to the variation measure. A new feature is that in the representation for the absolutely continuous part, a constant appears already in the weighted Euclidean case. As an application we show that in a variational minimization problem involving the functional, boundary values can be presented as a penalty term.
Mots-clés : calculus of variations, functionals of linear growth, relaxation, functions of bounded variation, analysis on metric measure spaces
@article{AGMS_2016_4_1_a12,
     author = {Hakkarainen, Heikki and Kinnunen, Juha and Lahti, Panu and Lehtel\"a, Pekka},
     title = {Relaxation and {Integral} {Representation} for {Functionals} of {Linear} {Growth} on {Metric} {Measure} spaces},
     journal = {Analysis and Geometry in Metric Spaces},
     year = {2016},
     volume = {4},
     number = {1},
     zbl = {1354.49027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a12/}
}
TY  - JOUR
AU  - Hakkarainen, Heikki
AU  - Kinnunen, Juha
AU  - Lahti, Panu
AU  - Lehtelä, Pekka
TI  - Relaxation and Integral Representation for Functionals of Linear Growth on Metric Measure spaces
JO  - Analysis and Geometry in Metric Spaces
PY  - 2016
VL  - 4
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a12/
LA  - en
ID  - AGMS_2016_4_1_a12
ER  - 
%0 Journal Article
%A Hakkarainen, Heikki
%A Kinnunen, Juha
%A Lahti, Panu
%A Lehtelä, Pekka
%T Relaxation and Integral Representation for Functionals of Linear Growth on Metric Measure spaces
%J Analysis and Geometry in Metric Spaces
%D 2016
%V 4
%N 1
%U http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a12/
%G en
%F AGMS_2016_4_1_a12
Hakkarainen, Heikki; Kinnunen, Juha; Lahti, Panu; Lehtelä, Pekka. Relaxation and Integral Representation for Functionals of Linear Growth on Metric Measure spaces. Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a12/