Constant Distortion Embeddings of Symmetric Diversities
Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

Diversities are like metric spaces, except that every finite subset, instead of just every pair of points, is assigned a value. Just as there is a theory of minimal distortion embeddings of fiite metric spaces into L1, there is a similar, yet undeveloped, theory for embedding finite diversities into the diversity analogue of L1 spaces. In the metric case, it iswell known that an n-point metric space can be embedded into L1 withO(log n) distortion. For diversities, the optimal distortion is unknown. Here, we establish the surprising result that symmetric diversities, those in which the diversity (value) assigned to a set depends only on its cardinality, can be embedded in L1 with constant distortion.
Mots-clés : diversities, metric embedding, L1 embedding, hypergraphs
@article{AGMS_2016_4_1_a11,
     author = {Bryant, David and Tupper, Paul F.},
     title = {Constant {Distortion} {Embeddings} of {Symmetric} {Diversities}},
     journal = {Analysis and Geometry in Metric Spaces},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2016},
     zbl = {1356.51005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a11/}
}
TY  - JOUR
AU  - Bryant, David
AU  - Tupper, Paul F.
TI  - Constant Distortion Embeddings of Symmetric Diversities
JO  - Analysis and Geometry in Metric Spaces
PY  - 2016
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a11/
LA  - en
ID  - AGMS_2016_4_1_a11
ER  - 
%0 Journal Article
%A Bryant, David
%A Tupper, Paul F.
%T Constant Distortion Embeddings of Symmetric Diversities
%J Analysis and Geometry in Metric Spaces
%D 2016
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a11/
%G en
%F AGMS_2016_4_1_a11
Bryant, David; Tupper, Paul F. Constant Distortion Embeddings of Symmetric Diversities. Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a11/