Convex Hull Property and Exclosure Theorems for H-Minimal Hypersurfaces in Carnot Groups
Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1
Cet article a éte moissonné depuis la source The Polish Digital Mathematics Library
In this paper, we generalize to sub-Riemannian Carnot groups some classical results in the theory of minimal submanifolds. Our main results are for step 2 Carnot groups. In this case, we will prove the convex hull property and some “exclosure theorems” for H-minimal hypersurfaces of class C2 satisfying a Hörmander-type condition.
Mots-clés :
Carnot groups, Sub-Riemannian geometry, H-minimal hypersurfaces, convex hull property, exclosuretheorems
@article{AGMS_2016_4_1_a1,
author = {Montefalcone, Francescopaolo},
title = {Convex {Hull} {Property} and {Exclosure} {Theorems} for {H-Minimal} {Hypersurfaces} in {Carnot} {Groups}},
journal = {Analysis and Geometry in Metric Spaces},
year = {2016},
volume = {4},
number = {1},
zbl = {1347.49081},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a1/}
}
Montefalcone, Francescopaolo. Convex Hull Property and Exclosure Theorems for H-Minimal Hypersurfaces in Carnot Groups. Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a1/