Infinitesimal Structure of Differentiability Spaces, and Metric Differentiation
Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1
Cet article a éte moissonné depuis la source The Polish Digital Mathematics Library
We prove metric differentiation for differentiability spaces in the sense of Cheeger [10, 14, 27]. As corollarieswe give a new proof of one of the main results of [14], a proof that the Lip-lip constant of any Lip-lip space in the sense of Keith [27] is equal to 1, and new nonembeddability results.
Mots-clés :
Metric measure space, bi-Lipschitz embedding, measurable differentiable structure, differentiabilityspace, metric differentiation
@article{AGMS_2016_4_1_a0,
author = {Cheeger, Jeff and Kleiner, Bruce and Schioppa, Andrea},
title = {Infinitesimal {Structure} of {Differentiability} {Spaces,} and {Metric} {Differentiation}},
journal = {Analysis and Geometry in Metric Spaces},
year = {2016},
volume = {4},
number = {1},
zbl = {1360.30047},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a0/}
}
TY - JOUR AU - Cheeger, Jeff AU - Kleiner, Bruce AU - Schioppa, Andrea TI - Infinitesimal Structure of Differentiability Spaces, and Metric Differentiation JO - Analysis and Geometry in Metric Spaces PY - 2016 VL - 4 IS - 1 UR - http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a0/ LA - en ID - AGMS_2016_4_1_a0 ER -
Cheeger, Jeff; Kleiner, Bruce; Schioppa, Andrea. Infinitesimal Structure of Differentiability Spaces, and Metric Differentiation. Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a0/