Infinitesimal Structure of Differentiability Spaces, and Metric Differentiation
Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

We prove metric differentiation for differentiability spaces in the sense of Cheeger [10, 14, 27]. As corollarieswe give a new proof of one of the main results of [14], a proof that the Lip-lip constant of any Lip-lip space in the sense of Keith [27] is equal to 1, and new nonembeddability results.
Mots-clés : Metric measure space, bi-Lipschitz embedding, measurable differentiable structure, differentiabilityspace, metric differentiation
@article{AGMS_2016_4_1_a0,
     author = {Cheeger, Jeff and Kleiner, Bruce and Schioppa, Andrea},
     title = {Infinitesimal {Structure} of {Differentiability} {Spaces,} and {Metric} {Differentiation}},
     journal = {Analysis and Geometry in Metric Spaces},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2016},
     zbl = {1360.30047},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a0/}
}
TY  - JOUR
AU  - Cheeger, Jeff
AU  - Kleiner, Bruce
AU  - Schioppa, Andrea
TI  - Infinitesimal Structure of Differentiability Spaces, and Metric Differentiation
JO  - Analysis and Geometry in Metric Spaces
PY  - 2016
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a0/
LA  - en
ID  - AGMS_2016_4_1_a0
ER  - 
%0 Journal Article
%A Cheeger, Jeff
%A Kleiner, Bruce
%A Schioppa, Andrea
%T Infinitesimal Structure of Differentiability Spaces, and Metric Differentiation
%J Analysis and Geometry in Metric Spaces
%D 2016
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a0/
%G en
%F AGMS_2016_4_1_a0
Cheeger, Jeff; Kleiner, Bruce; Schioppa, Andrea. Infinitesimal Structure of Differentiability Spaces, and Metric Differentiation. Analysis and Geometry in Metric Spaces, Tome 4 (2016) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2016_4_1_a0/