Some Fine Properties of BV Functions on Wiener Spaces
Analysis and Geometry in Metric Spaces, Tome 3 (2015) no. 1.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

In this paper we define jump set and approximate limits for BV functions on Wiener spaces and show that the weak gradient admits a decomposition similar to the finite dimensional case. We also define the SBV class of functions of special bounded variation and give a characterisation of SBV via a chain rule and a closure theorem. We also provide a characterisation of BV functions in terms of the short-time behaviour of the Ornstein-Uhlenbeck semigroup following an approach due to Ledoux.
Mots-clés : Wiener space, functions of bounded variation
@article{AGMS_2015_3_1_a8,
     author = {Ambrosio, Luigi and Miranda Jr., Michele and Pallara, Diego},
     title = {Some {Fine} {Properties} of {BV} {Functions} on {Wiener} {Spaces}},
     journal = {Analysis and Geometry in Metric Spaces},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2015},
     zbl = {1321.26058},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a8/}
}
TY  - JOUR
AU  - Ambrosio, Luigi
AU  - Miranda Jr., Michele
AU  - Pallara, Diego
TI  - Some Fine Properties of BV Functions on Wiener Spaces
JO  - Analysis and Geometry in Metric Spaces
PY  - 2015
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a8/
LA  - en
ID  - AGMS_2015_3_1_a8
ER  - 
%0 Journal Article
%A Ambrosio, Luigi
%A Miranda Jr., Michele
%A Pallara, Diego
%T Some Fine Properties of BV Functions on Wiener Spaces
%J Analysis and Geometry in Metric Spaces
%D 2015
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a8/
%G en
%F AGMS_2015_3_1_a8
Ambrosio, Luigi; Miranda Jr., Michele; Pallara, Diego. Some Fine Properties of BV Functions on Wiener Spaces. Analysis and Geometry in Metric Spaces, Tome 3 (2015) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a8/