Obata’s Rigidity Theorem for Metric Measure Spaces
Analysis and Geometry in Metric Spaces, Tome 3 (2015) no. 1.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

We prove Obata’s rigidity theorem for metric measure spaces that satisfy a Riemannian curvaturedimension condition. Additionally,we show that a lower bound K for the generalizedHessian of a sufficiently regular function u holds if and only if u is K-convex. A corollary is also a rigidity result for higher order eigenvalues.
Mots-clés : eigenvalue, suspension, Hessian, convexity
@article{AGMS_2015_3_1_a7,
     author = {Ketterer, Christian},
     title = {Obata{\textquoteright}s {Rigidity} {Theorem} for {Metric} {Measure} {Spaces}},
     journal = {Analysis and Geometry in Metric Spaces},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2015},
     zbl = {1327.53051},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a7/}
}
TY  - JOUR
AU  - Ketterer, Christian
TI  - Obata’s Rigidity Theorem for Metric Measure Spaces
JO  - Analysis and Geometry in Metric Spaces
PY  - 2015
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a7/
LA  - en
ID  - AGMS_2015_3_1_a7
ER  - 
%0 Journal Article
%A Ketterer, Christian
%T Obata’s Rigidity Theorem for Metric Measure Spaces
%J Analysis and Geometry in Metric Spaces
%D 2015
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a7/
%G en
%F AGMS_2015_3_1_a7
Ketterer, Christian. Obata’s Rigidity Theorem for Metric Measure Spaces. Analysis and Geometry in Metric Spaces, Tome 3 (2015) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a7/