Obata’s Rigidity Theorem for Metric Measure Spaces
Analysis and Geometry in Metric Spaces, Tome 3 (2015) no. 1
Cet article a éte moissonné depuis la source The Polish Digital Mathematics Library
We prove Obata’s rigidity theorem for metric measure spaces that satisfy a Riemannian curvaturedimension condition. Additionally,we show that a lower bound K for the generalizedHessian of a sufficiently regular function u holds if and only if u is K-convex. A corollary is also a rigidity result for higher order eigenvalues.
@article{AGMS_2015_3_1_a7,
author = {Ketterer, Christian},
title = {Obata{\textquoteright}s {Rigidity} {Theorem} for {Metric} {Measure} {Spaces}},
journal = {Analysis and Geometry in Metric Spaces},
year = {2015},
volume = {3},
number = {1},
zbl = {1327.53051},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a7/}
}
Ketterer, Christian. Obata’s Rigidity Theorem for Metric Measure Spaces. Analysis and Geometry in Metric Spaces, Tome 3 (2015) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a7/