Tight Embeddability of Proper and Stable Metric Spaces
Analysis and Geometry in Metric Spaces, Tome 3 (2015) no. 1 Cet article a éte moissonné depuis la source The Polish Digital Mathematics Library

Voir la notice de l'article

We introduce the notions of almost Lipschitz embeddability and nearly isometric embeddability. We prove that for p ∈ [1,∞], every proper subset of Lp is almost Lipschitzly embeddable into a Banach space X if and only if X contains uniformly the lpn’s. We also sharpen a result of N. Kalton by showing that every stable metric space is nearly isometrically embeddable in the class of reflexive Banach spaces.
Mots-clés : almost Lipschitz embeddability, nearly isometric embeddability, proper metric spaces, stable metric spaces
@article{AGMS_2015_3_1_a6,
     author = {Baudier, F. and Lancien, G.},
     title = {Tight {Embeddability} of {Proper} and {Stable} {Metric} {Spaces}},
     journal = {Analysis and Geometry in Metric Spaces},
     year = {2015},
     volume = {3},
     number = {1},
     zbl = {1341.46015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a6/}
}
TY  - JOUR
AU  - Baudier, F.
AU  - Lancien, G.
TI  - Tight Embeddability of Proper and Stable Metric Spaces
JO  - Analysis and Geometry in Metric Spaces
PY  - 2015
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a6/
LA  - en
ID  - AGMS_2015_3_1_a6
ER  - 
%0 Journal Article
%A Baudier, F.
%A Lancien, G.
%T Tight Embeddability of Proper and Stable Metric Spaces
%J Analysis and Geometry in Metric Spaces
%D 2015
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a6/
%G en
%F AGMS_2015_3_1_a6
Baudier, F.; Lancien, G. Tight Embeddability of Proper and Stable Metric Spaces. Analysis and Geometry in Metric Spaces, Tome 3 (2015) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a6/