Tight Embeddability of Proper and Stable Metric Spaces
Analysis and Geometry in Metric Spaces, Tome 3 (2015) no. 1.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

We introduce the notions of almost Lipschitz embeddability and nearly isometric embeddability. We prove that for p ∈ [1,∞], every proper subset of Lp is almost Lipschitzly embeddable into a Banach space X if and only if X contains uniformly the lpn’s. We also sharpen a result of N. Kalton by showing that every stable metric space is nearly isometrically embeddable in the class of reflexive Banach spaces.
Mots-clés : almost Lipschitz embeddability, nearly isometric embeddability, proper metric spaces, stable metric spaces
@article{AGMS_2015_3_1_a6,
     author = {Baudier, F. and Lancien, G.},
     title = {Tight {Embeddability} of {Proper} and {Stable} {Metric} {Spaces}},
     journal = {Analysis and Geometry in Metric Spaces},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2015},
     zbl = {1341.46015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a6/}
}
TY  - JOUR
AU  - Baudier, F.
AU  - Lancien, G.
TI  - Tight Embeddability of Proper and Stable Metric Spaces
JO  - Analysis and Geometry in Metric Spaces
PY  - 2015
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a6/
LA  - en
ID  - AGMS_2015_3_1_a6
ER  - 
%0 Journal Article
%A Baudier, F.
%A Lancien, G.
%T Tight Embeddability of Proper and Stable Metric Spaces
%J Analysis and Geometry in Metric Spaces
%D 2015
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a6/
%G en
%F AGMS_2015_3_1_a6
Baudier, F.; Lancien, G. Tight Embeddability of Proper and Stable Metric Spaces. Analysis and Geometry in Metric Spaces, Tome 3 (2015) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a6/