BiLipschitz Decomposition of Lipschitz Maps between Carnot Groups
Analysis and Geometry in Metric Spaces, Tome 3 (2015) no. 1.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

Let f : G → H be a Lipschitz map between two Carnot groups. We show that if B is a ball of G, then there exists a subset Z ⊂ B, whose image in H under f has small Hausdorff content, such that B\Z can be decomposed into a controlled number of pieces, the restriction of f on each of which is quantitatively biLipschitz. This extends a result of [14], which proved the same result, but with the restriction that G has an appropriate discretization. We provide an example of a Carnot group not admitting such a discretization.
Mots-clés : Carnot group, sub-riemannian geometry, Lipschitz maps
@article{AGMS_2015_3_1_a3,
     author = {Li, Sean},
     title = {BiLipschitz {Decomposition} of {Lipschitz} {Maps} between {Carnot} {Groups}},
     journal = {Analysis and Geometry in Metric Spaces},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2015},
     zbl = {1331.53055},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a3/}
}
TY  - JOUR
AU  - Li, Sean
TI  - BiLipschitz Decomposition of Lipschitz Maps between Carnot Groups
JO  - Analysis and Geometry in Metric Spaces
PY  - 2015
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a3/
LA  - en
ID  - AGMS_2015_3_1_a3
ER  - 
%0 Journal Article
%A Li, Sean
%T BiLipschitz Decomposition of Lipschitz Maps between Carnot Groups
%J Analysis and Geometry in Metric Spaces
%D 2015
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a3/
%G en
%F AGMS_2015_3_1_a3
Li, Sean. BiLipschitz Decomposition of Lipschitz Maps between Carnot Groups. Analysis and Geometry in Metric Spaces, Tome 3 (2015) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a3/