Bi-Lipschitz Bijections of Z
Analysis and Geometry in Metric Spaces, Tome 3 (2015) no. 1.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

It is shown that every bi-Lipschitz bijection from Z to itself is at a bounded L1 distance from either the identity or the reflection.We then comment on the group-theoretic properties of the action of bi-Lipschitz bijections.
Mots-clés : Bi-Lipschitz, bijections
@article{AGMS_2015_3_1_a19,
     author = {Benjamini, Itai and Shamov, Alexander},
     title = {Bi-Lipschitz {Bijections} of {Z}},
     journal = {Analysis and Geometry in Metric Spaces},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2015},
     zbl = {1325.26011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a19/}
}
TY  - JOUR
AU  - Benjamini, Itai
AU  - Shamov, Alexander
TI  - Bi-Lipschitz Bijections of Z
JO  - Analysis and Geometry in Metric Spaces
PY  - 2015
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a19/
LA  - en
ID  - AGMS_2015_3_1_a19
ER  - 
%0 Journal Article
%A Benjamini, Itai
%A Shamov, Alexander
%T Bi-Lipschitz Bijections of Z
%J Analysis and Geometry in Metric Spaces
%D 2015
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a19/
%G en
%F AGMS_2015_3_1_a19
Benjamini, Itai; Shamov, Alexander. Bi-Lipschitz Bijections of Z. Analysis and Geometry in Metric Spaces, Tome 3 (2015) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a19/