Lusin-type Theorems for Cheeger Derivatives on Metric Measure Spaces
Analysis and Geometry in Metric Spaces, Tome 3 (2015) no. 1.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

A theorem of Lusin states that every Borel function onRis equal almost everywhere to the derivative of a continuous function. This result was later generalized to Rn in works of Alberti and Moonens-Pfeffer. In this note, we prove direct analogs of these results on a large class of metric measure spaces, those with doubling measures and Poincaré inequalities, which admit a form of differentiation by a famous theorem of Cheeger.
Mots-clés : Lipschitz, Lusin, PI space, Poincaré inequality, measurable differentiable structure
@article{AGMS_2015_3_1_a16,
     author = {David, Guy C. David},
     title = {Lusin-type {Theorems} for {Cheeger} {Derivatives} on {Metric} {Measure} {Spaces}},
     journal = {Analysis and Geometry in Metric Spaces},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2015},
     zbl = {1325.26030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a16/}
}
TY  - JOUR
AU  - David, Guy C. David
TI  - Lusin-type Theorems for Cheeger Derivatives on Metric Measure Spaces
JO  - Analysis and Geometry in Metric Spaces
PY  - 2015
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a16/
LA  - en
ID  - AGMS_2015_3_1_a16
ER  - 
%0 Journal Article
%A David, Guy C. David
%T Lusin-type Theorems for Cheeger Derivatives on Metric Measure Spaces
%J Analysis and Geometry in Metric Spaces
%D 2015
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a16/
%G en
%F AGMS_2015_3_1_a16
David, Guy C. David. Lusin-type Theorems for Cheeger Derivatives on Metric Measure Spaces. Analysis and Geometry in Metric Spaces, Tome 3 (2015) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a16/