The p-Royden and p-Harmonic Boundaries for Metric Measure Spaces
Analysis and Geometry in Metric Spaces, Tome 3 (2015) no. 1.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

Let p be a real number greater than one and let X be a locally compact, noncompact metric measure space that satisfies certain conditions. The p-Royden and p-harmonic boundaries of X are constructed by using the p-Royden algebra of functions on X and a Dirichlet type problem is solved for the p-Royden boundary. We also characterize the metric measure spaces whose p-harmonic boundary is empty.
Mots-clés : Dirichlet problem at infinity, metric measure space, p-harmonic function, p-parabolic, p-Royden algebra, p-weak upper gradient, (p, p)-Sobolev inequality
@article{AGMS_2015_3_1_a13,
     author = {Lucia, Marcello and Puls, Michael J.},
     title = {The {p-Royden} and {p-Harmonic} {Boundaries} for {Metric} {Measure} {Spaces}},
     journal = {Analysis and Geometry in Metric Spaces},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2015},
     zbl = {1317.31021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a13/}
}
TY  - JOUR
AU  - Lucia, Marcello
AU  - Puls, Michael J.
TI  - The p-Royden and p-Harmonic Boundaries for Metric Measure Spaces
JO  - Analysis and Geometry in Metric Spaces
PY  - 2015
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a13/
LA  - en
ID  - AGMS_2015_3_1_a13
ER  - 
%0 Journal Article
%A Lucia, Marcello
%A Puls, Michael J.
%T The p-Royden and p-Harmonic Boundaries for Metric Measure Spaces
%J Analysis and Geometry in Metric Spaces
%D 2015
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a13/
%G en
%F AGMS_2015_3_1_a13
Lucia, Marcello; Puls, Michael J. The p-Royden and p-Harmonic Boundaries for Metric Measure Spaces. Analysis and Geometry in Metric Spaces, Tome 3 (2015) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a13/