Locallyn-Connected Compacta and UV n-Maps
Analysis and Geometry in Metric Spaces, Tome 3 (2015) no. 1.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

We provide a machinery for transferring some properties of metrizable ANR-spaces to metrizable LCn-spaces. As a result, we show that for completely metrizable spaces the properties ALCn, LCn and WLCn coincide to each other. We also provide the following spectral characterizations of ALCn and celllike compacta: A compactum X is ALCn if and only if X is the limit space of a σ-complete inverse system S = {Xα , pβ α , α β τ} consisting of compact metrizable LCn-spaces Xα such that all bonding projections pβα, as a well all limit projections pα, are UVn-maps. A compactum X is a cell-like (resp., UVn) space if and only if X is the limit space of a σ-complete inverse system consisting of cell-like (resp., UVn) metrizable compacta.
Mots-clés : absolute neighborhood retracts, ALCn-spaces, cell-like maps and spaces, WLCn-spaces, UVn-maps and space
@article{AGMS_2015_3_1_a1,
     author = {Valov, V.},
     title = {Locallyn-Connected {Compacta} and {UV} {n-Maps}},
     journal = {Analysis and Geometry in Metric Spaces},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a1/}
}
TY  - JOUR
AU  - Valov, V.
TI  - Locallyn-Connected Compacta and UV n-Maps
JO  - Analysis and Geometry in Metric Spaces
PY  - 2015
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a1/
LA  - en
ID  - AGMS_2015_3_1_a1
ER  - 
%0 Journal Article
%A Valov, V.
%T Locallyn-Connected Compacta and UV n-Maps
%J Analysis and Geometry in Metric Spaces
%D 2015
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a1/
%G en
%F AGMS_2015_3_1_a1
Valov, V. Locallyn-Connected Compacta and UV n-Maps. Analysis and Geometry in Metric Spaces, Tome 3 (2015) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a1/