Some Results on Maps That Factor through a Tree
Analysis and Geometry in Metric Spaces, Tome 3 (2015) no. 1.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

We give a necessary and sufficient condition for a map deffned on a simply-connected quasi-convex metric space to factor through a tree. In case the target is the Euclidean plane and the map is Hölder continuous with exponent bigger than 1/2, such maps can be characterized by the vanishing of some integrals over winding number functions. This in particular shows that if the target is the Heisenberg group equipped with the Carnot-Carathéodory metric and the Hölder exponent of the map is bigger than 2/3, the map factors through a tree.
Mots-clés : trees, Heisenberg group, Stieltjes-Integral, currents, winding number
@article{AGMS_2015_3_1_a0,
     author = {Z\"ust, Roger},
     title = {Some {Results} on {Maps} {That} {Factor} through a {Tree}},
     journal = {Analysis and Geometry in Metric Spaces},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2015},
     zbl = {1317.51008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a0/}
}
TY  - JOUR
AU  - Züst, Roger
TI  - Some Results on Maps That Factor through a Tree
JO  - Analysis and Geometry in Metric Spaces
PY  - 2015
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a0/
LA  - en
ID  - AGMS_2015_3_1_a0
ER  - 
%0 Journal Article
%A Züst, Roger
%T Some Results on Maps That Factor through a Tree
%J Analysis and Geometry in Metric Spaces
%D 2015
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a0/
%G en
%F AGMS_2015_3_1_a0
Züst, Roger. Some Results on Maps That Factor through a Tree. Analysis and Geometry in Metric Spaces, Tome 3 (2015) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2015_3_1_a0/