On the Curvature and Heat Flow on Hamiltonian Systems
Analysis and Geometry in Metric Spaces, Tome 2 (2014) no. 1.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

We develop the differential geometric and geometric analytic studies of Hamiltonian systems. Key ingredients are the curvature operator, the weighted Laplacian, and the associated Riccati equation.We prove appropriate generalizations of the Bochner-Weitzenböck formula and Laplacian comparison theorem, and study the heat flow.
Mots-clés : Hamiltonian, curvature, comparison theorem, heat flow
@article{AGMS_2014_2_1_a9,
     author = {Ohta, Shin-ichi},
     title = {On the {Curvature} and {Heat} {Flow} on {Hamiltonian} {Systems}},
     journal = {Analysis and Geometry in Metric Spaces},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2014},
     zbl = {1295.53029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a9/}
}
TY  - JOUR
AU  - Ohta, Shin-ichi
TI  - On the Curvature and Heat Flow on Hamiltonian Systems
JO  - Analysis and Geometry in Metric Spaces
PY  - 2014
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a9/
LA  - en
ID  - AGMS_2014_2_1_a9
ER  - 
%0 Journal Article
%A Ohta, Shin-ichi
%T On the Curvature and Heat Flow on Hamiltonian Systems
%J Analysis and Geometry in Metric Spaces
%D 2014
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a9/
%G en
%F AGMS_2014_2_1_a9
Ohta, Shin-ichi. On the Curvature and Heat Flow on Hamiltonian Systems. Analysis and Geometry in Metric Spaces, Tome 2 (2014) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a9/