On the Curvature and Heat Flow on Hamiltonian Systems
Analysis and Geometry in Metric Spaces, Tome 2 (2014) no. 1
Cet article a éte moissonné depuis la source The Polish Digital Mathematics Library
We develop the differential geometric and geometric analytic studies of Hamiltonian systems. Key ingredients are the curvature operator, the weighted Laplacian, and the associated Riccati equation.We prove appropriate generalizations of the Bochner-Weitzenböck formula and Laplacian comparison theorem, and study the heat flow.
@article{AGMS_2014_2_1_a9,
author = {Ohta, Shin-ichi},
title = {On the {Curvature} and {Heat} {Flow} on {Hamiltonian} {Systems}},
journal = {Analysis and Geometry in Metric Spaces},
year = {2014},
volume = {2},
number = {1},
zbl = {1295.53029},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a9/}
}
Ohta, Shin-ichi. On the Curvature and Heat Flow on Hamiltonian Systems. Analysis and Geometry in Metric Spaces, Tome 2 (2014) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a9/