Metric Perspectives of the Ricci Flow Applied to Disjoint Unions
Analysis and Geometry in Metric Spaces, Tome 2 (2014) no. 1.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

In this paper we consider compact, Riemannian manifolds M1, M2 each equipped with a oneparameter family of metrics g1(t), g2(t) satisfying the Ricci flow equation. Adopting the characterization of super-solutions to the Ricci flow developed by McCann-Topping, we define a super Ricci flow for a family of distance metrics defined on the disjoint union M1 ⊔ M2. In particular, we show such a super Ricci flow property holds provided the distance function between points in M1 and M2 is itself a super solution of the heat equation on M1 × M2. We also discuss possible applications and examples.
Mots-clés : super Ricci flow, disjoint union, heat kernel
@article{AGMS_2014_2_1_a4,
     author = {Lakzian, Sajjad and Munn, Michael},
     title = {Metric {Perspectives} of the {Ricci} {Flow} {Applied} to {Disjoint} {Unions}},
     journal = {Analysis and Geometry in Metric Spaces},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2014},
     zbl = {1322.53037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a4/}
}
TY  - JOUR
AU  - Lakzian, Sajjad
AU  - Munn, Michael
TI  - Metric Perspectives of the Ricci Flow Applied to Disjoint Unions
JO  - Analysis and Geometry in Metric Spaces
PY  - 2014
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a4/
LA  - en
ID  - AGMS_2014_2_1_a4
ER  - 
%0 Journal Article
%A Lakzian, Sajjad
%A Munn, Michael
%T Metric Perspectives of the Ricci Flow Applied to Disjoint Unions
%J Analysis and Geometry in Metric Spaces
%D 2014
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a4/
%G en
%F AGMS_2014_2_1_a4
Lakzian, Sajjad; Munn, Michael. Metric Perspectives of the Ricci Flow Applied to Disjoint Unions. Analysis and Geometry in Metric Spaces, Tome 2 (2014) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a4/