Comparison of Metric Spectral Gaps
Analysis and Geometry in Metric Spaces, Tome 2 (2014) no. 1.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

Let A = (aij) ∊ Mn(R) be an n by n symmetric stochastic matrix. For p ∊ [1, ∞) and a metric space (X, dX), let γ(A, dpx) be the infimum over those γ ∊ (0,∞] for which every x1, . . . , xn ∊ X satisfy [...] Thus γ (A, dpx) measures the magnitude of the nonlinear spectral gap of the matrix A with respect to the kernel dpX : X × X →[0,∞). We study pairs of metric spaces (X, dX) and (Y, dY ) for which there exists Ψ: (0,∞)→(0,∞) such that γ (A, dpX) ≤Ψ (A, dpY ) for every symmetric stochastic A ∊ Mn(R) with (A, dpY ) ∞. When Ψ is linear a complete geometric characterization is obtained. Our estimates on nonlinear spectral gaps yield new embeddability results as well as new nonembeddability results. For example, it is shown that if n ∊ N and p ∊ (2,∞) then for every f1, . . . , fn ∊ Lp there exist x1, . . . , xn ∊ L2 such that [...] and [...] This statement is impossible for p ∊ [1, 2), and the asymptotic dependence on p in (0.1) is sharp. We also obtain the best known lower bound on the Lp distortion of Ramanujan graphs, improving over the work of Matoušek. Links to Bourgain-Milman-Wolfson type and a conjectural nonlinear Maurey-Pisier theorem are studied.
Mots-clés : Metric embeddings, nonlinear spectral gaps, expanders, nonlinear type
@article{AGMS_2014_2_1_a2,
     author = {Naor, Assaf},
     title = {Comparison of {Metric} {Spectral} {Gaps}},
     journal = {Analysis and Geometry in Metric Spaces},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2014},
     zbl = {1316.46023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a2/}
}
TY  - JOUR
AU  - Naor, Assaf
TI  - Comparison of Metric Spectral Gaps
JO  - Analysis and Geometry in Metric Spaces
PY  - 2014
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a2/
LA  - en
ID  - AGMS_2014_2_1_a2
ER  - 
%0 Journal Article
%A Naor, Assaf
%T Comparison of Metric Spectral Gaps
%J Analysis and Geometry in Metric Spaces
%D 2014
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a2/
%G en
%F AGMS_2014_2_1_a2
Naor, Assaf. Comparison of Metric Spectral Gaps. Analysis and Geometry in Metric Spaces, Tome 2 (2014) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a2/