Metric Characterizations of Superreflexivity in Terms of Word Hyperbolic Groups and Finite Graphs
Analysis and Geometry in Metric Spaces, Tome 2 (2014) no. 1.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

We show that superreflexivity can be characterized in terms of bilipschitz embeddability of word hyperbolic groups.We compare characterizations of superrefiexivity in terms of diamond graphs and binary trees.We show that there exist sequences of series-parallel graphs of increasing topological complexitywhich admit uniformly bilipschitz embeddings into a Hilbert space, and thus do not characterize superrefiexivity.
Mots-clés : bi-Lipschitz embedding, diamond graphs, series-parallel graph, superreflexivity;word hyperbolic group
@article{AGMS_2014_2_1_a13,
     author = {Ostrovskii, Mikhail},
     title = {Metric {Characterizations} of {Superreflexivity} in {Terms} of {Word} {Hyperbolic} {Groups} and {Finite} {Graphs}},
     journal = {Analysis and Geometry in Metric Spaces},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2014},
     zbl = {1318.46010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a13/}
}
TY  - JOUR
AU  - Ostrovskii, Mikhail
TI  - Metric Characterizations of Superreflexivity in Terms of Word Hyperbolic Groups and Finite Graphs
JO  - Analysis and Geometry in Metric Spaces
PY  - 2014
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a13/
LA  - en
ID  - AGMS_2014_2_1_a13
ER  - 
%0 Journal Article
%A Ostrovskii, Mikhail
%T Metric Characterizations of Superreflexivity in Terms of Word Hyperbolic Groups and Finite Graphs
%J Analysis and Geometry in Metric Spaces
%D 2014
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a13/
%G en
%F AGMS_2014_2_1_a13
Ostrovskii, Mikhail. Metric Characterizations of Superreflexivity in Terms of Word Hyperbolic Groups and Finite Graphs. Analysis and Geometry in Metric Spaces, Tome 2 (2014) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a13/