Riemannian Polyhedra and Liouville-Type Theorems for Harmonic Maps
Analysis and Geometry in Metric Spaces, Tome 2 (2014) no. 1
Cet article a éte moissonné depuis la source The Polish Digital Mathematics Library
This paper is a study of harmonic maps fromRiemannian polyhedra to locally non-positively curved geodesic spaces in the sense of Alexandrov. We prove Liouville-type theorems for subharmonic functions and harmonic maps under two different assumptions on the source space. First we prove the analogue of the Schoen-Yau Theorem on a complete pseudomanifolds with non-negative Ricci curvature. Then we study 2-parabolic admissible Riemannian polyhedra and prove some vanishing results on them.
Mots-clés :
Harmonic maps, Riemannian polyhedra, pseudomanifolds, Liouville-type theorem, non-negativeRicci
@article{AGMS_2014_2_1_a10,
author = {Sinaei, Zahra},
title = {Riemannian {Polyhedra} and {Liouville-Type} {Theorems} for {Harmonic} {Maps}},
journal = {Analysis and Geometry in Metric Spaces},
year = {2014},
volume = {2},
number = {1},
zbl = {1309.53056},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a10/}
}
Sinaei, Zahra. Riemannian Polyhedra and Liouville-Type Theorems for Harmonic Maps. Analysis and Geometry in Metric Spaces, Tome 2 (2014) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a10/