Riemannian Polyhedra and Liouville-Type Theorems for Harmonic Maps
Analysis and Geometry in Metric Spaces, Tome 2 (2014) no. 1.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

This paper is a study of harmonic maps fromRiemannian polyhedra to locally non-positively curved geodesic spaces in the sense of Alexandrov. We prove Liouville-type theorems for subharmonic functions and harmonic maps under two different assumptions on the source space. First we prove the analogue of the Schoen-Yau Theorem on a complete pseudomanifolds with non-negative Ricci curvature. Then we study 2-parabolic admissible Riemannian polyhedra and prove some vanishing results on them.
Mots-clés : Harmonic maps, Riemannian polyhedra, pseudomanifolds, Liouville-type theorem, non-negativeRicci
@article{AGMS_2014_2_1_a10,
     author = {Sinaei, Zahra},
     title = {Riemannian {Polyhedra} and {Liouville-Type} {Theorems} for {Harmonic} {Maps}},
     journal = {Analysis and Geometry in Metric Spaces},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2014},
     zbl = {1309.53056},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a10/}
}
TY  - JOUR
AU  - Sinaei, Zahra
TI  - Riemannian Polyhedra and Liouville-Type Theorems for Harmonic Maps
JO  - Analysis and Geometry in Metric Spaces
PY  - 2014
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a10/
LA  - en
ID  - AGMS_2014_2_1_a10
ER  - 
%0 Journal Article
%A Sinaei, Zahra
%T Riemannian Polyhedra and Liouville-Type Theorems for Harmonic Maps
%J Analysis and Geometry in Metric Spaces
%D 2014
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a10/
%G en
%F AGMS_2014_2_1_a10
Sinaei, Zahra. Riemannian Polyhedra and Liouville-Type Theorems for Harmonic Maps. Analysis and Geometry in Metric Spaces, Tome 2 (2014) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a10/