Invertible Carnot Groups
Analysis and Geometry in Metric Spaces, Tome 2 (2014) no. 1
Cet article a éte moissonné depuis la source The Polish Digital Mathematics Library
We characterize Carnot groups admitting a 1-quasiconformal metric inversion as the Lie groups of Heisenberg type whose Lie algebras satisfy the J2-condition, thus characterizing a special case of inversion invariant bi-Lipschitz homogeneity. A more general characterization of inversion invariant bi-Lipschitz homogeneity for certain non-fractal metric spaces is also provided.
@article{AGMS_2014_2_1_a0,
author = {Freeman, David M.},
title = {Invertible {Carnot} {Groups}},
journal = {Analysis and Geometry in Metric Spaces},
year = {2014},
volume = {2},
number = {1},
zbl = {1318.53023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a0/}
}
Freeman, David M. Invertible Carnot Groups. Analysis and Geometry in Metric Spaces, Tome 2 (2014) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a0/