Invertible Carnot Groups
Analysis and Geometry in Metric Spaces, Tome 2 (2014) no. 1.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

We characterize Carnot groups admitting a 1-quasiconformal metric inversion as the Lie groups of Heisenberg type whose Lie algebras satisfy the J2-condition, thus characterizing a special case of inversion invariant bi-Lipschitz homogeneity. A more general characterization of inversion invariant bi-Lipschitz homogeneity for certain non-fractal metric spaces is also provided.
Mots-clés : metric inversion, bi-Lipschitz homogeneity, Carnot groups
@article{AGMS_2014_2_1_a0,
     author = {Freeman, David M.},
     title = {Invertible {Carnot} {Groups}},
     journal = {Analysis and Geometry in Metric Spaces},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2014},
     zbl = {1318.53023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a0/}
}
TY  - JOUR
AU  - Freeman, David M.
TI  - Invertible Carnot Groups
JO  - Analysis and Geometry in Metric Spaces
PY  - 2014
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a0/
LA  - en
ID  - AGMS_2014_2_1_a0
ER  - 
%0 Journal Article
%A Freeman, David M.
%T Invertible Carnot Groups
%J Analysis and Geometry in Metric Spaces
%D 2014
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a0/
%G en
%F AGMS_2014_2_1_a0
Freeman, David M. Invertible Carnot Groups. Analysis and Geometry in Metric Spaces, Tome 2 (2014) no. 1. http://geodesic.mathdoc.fr/item/AGMS_2014_2_1_a0/