On Asymmetric Distances
Analysis and Geometry in Metric Spaces, Tome 1 (2013) no. 1, pp. 200-231.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

In this paper we discuss asymmetric length structures and asymmetric metric spaces. A length structure induces a (semi)distance function; by using the total variation formula, a (semi)distance function induces a length. In the first part we identify a topology in the set of paths that best describes when the above operations are idempotent. As a typical application, we consider the length of paths defined by a Finslerian functional in Calculus of Variations. In the second part we generalize the setting of General metric spaces of Busemann, and discuss the newly found aspects of the theory: we identify three interesting classes of paths, and compare them; we note that a geodesic segment (as defined by Busemann) is not necessarily continuous in our setting; hence we present three different notions of intrinsic metric space.
Mots-clés : Asymmetric metric, general metric, quasi metric, ostensible metric, Finsler metric, run–continuity, intrinsic metric, pathmetric, length structure
@article{AGMS_2013_1_1_a9,
     author = {Mennucci, Andrea C.G.},
     title = {On {Asymmetric} {Distances}},
     journal = {Analysis and Geometry in Metric Spaces},
     pages = {200--231},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2013},
     zbl = {1293.53081},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a9/}
}
TY  - JOUR
AU  - Mennucci, Andrea C.G.
TI  - On Asymmetric Distances
JO  - Analysis and Geometry in Metric Spaces
PY  - 2013
SP  - 200
EP  - 231
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a9/
LA  - en
ID  - AGMS_2013_1_1_a9
ER  - 
%0 Journal Article
%A Mennucci, Andrea C.G.
%T On Asymmetric Distances
%J Analysis and Geometry in Metric Spaces
%D 2013
%P 200-231
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a9/
%G en
%F AGMS_2013_1_1_a9
Mennucci, Andrea C.G. On Asymmetric Distances. Analysis and Geometry in Metric Spaces, Tome 1 (2013) no. 1, pp. 200-231. http://geodesic.mathdoc.fr/item/AGMS_2013_1_1_a9/